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In Section 5 we introduce an alternate NN model in which a neuron is defined for each link
of each path between every SD pair. Our studies demonstrate the ability of this NN model to
provide the excitatory connections that are needed to activate complete paths.

We then turn our attention to the problem of link-activation scheduling. In Section 6 we
define the two versions of the scheduling problem that are addressed in this report, i.e., the
nonsequential- and sequential-activation problems. Scheduling conflicts are defined, and the
multhop radio network that has served as the testing ground fbr our simulations is introduced.

In Section 7 we present lower bounds on the length of schedules that satisfy
communication requirements for both versions of the problem, as well as heuristics for the
determination of short (although not necessarily minimum-length) schedules. These bounds and
heuristics are helpful in assessing the performance of the NN model.

In Section 8 we define our NN model for the scheduling problem. Constraints are
established that reflect the desired behavior of the NN, i.e., the generation of schedules of
minimum length. As in the muting problem, these constraints are expressed in the form of energy
terms in the Lyapunov energy function, thus permitting the determination of the corresponding
connection weights and bias currents, which in turn leads to the equations of motion that
characterize system evolution. Again, a key feature of our model, which has been crucial to its
high degree of success, is the use of the method of Lagrange multipliers to dynamically vary the
connection weights as the system state evolves. Several variations of the NN model are discussed.

In Section 9 we discuss issues associated with the simulation process. These include the
generation of initial NN states, the interpretation of system state, termination criteria, and methods
to evaluate performance.

In Section 10 we discuss simulation results for the nonsequential-activation scheduling
(NAS) problem. The ability of our NN model to find optimum schedules for a number of diverse
problem instances, including highly constrained ones, is demonstrated by simulating several
variations of the model. These simulations also reveal that the NN model is relatively insensitive to
variations in the parameter values and the communication requirements. Modifications that further
enhance the NN performance are developed and evaluated.

In Section II we discuss simulation results for the sequential-activation scheduling (SAS)
problem. Simulations of our SAS NN model indicate that the SAS problem is significantly more
difficult than the NAS problem. Modifications to the model, based on conventional heuristic
methods, are implemented to give a model that generates optimal, or nearly optimal, schedules for
a number of different problem instances. The length of the optimum schedule is difficult to
calculate, and, for several problem instances, has only been determined by the NN's generation of
a schedule whose length matches a known lower bound.

In Section 12 we address the joint routing-scheduling problem. We demonstrate that the
problems of routing and scheduling are not separable. Therefore, it would be desirable to develop
a NN model (or other heuristic approach) that incorporates the interactions between routing and
scheduling. We outline the components of a NN model for this problem; however, the resulting
model is extremely complex, except for small problems, and has not been implemented.

Finally, in Section 13 we present our conclusions from this study.

2.0 ROUTING AND SCHEDULING PROBLEMS IN PACKET RADIO
NETWORKS

The basic problem that motivated the work described in this report is the rather
fundamental, and yet quite neglected, property of mulihop radio networks that couples the
problems of channel access and routing. Here, we are interested in networks with point-to-point
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communication requirements, i.e., networks that support the delivery of traffic between specific
source-destination (SD) pairs over multihop paths.* In all types of communication networks, it has
been a common practice to break up the enormous total network design problem into subproblems,
each of which can be studied in isolation. This partitioning usually follows the "layered" structure
of the Open Systems Interconnection (OSI) architecture (see e.g., Ref. 21). Thus, even though it
is recognized that problems, issues, and design choices that reside in separate layers are, in fact,
interdependent, they are addressed separately; only at the final "integration" stage is there an
occasional attempt to recognize their influence on each other.

However, it is increasingly being recognized that in certain cases the interaction between
two or more factors from different layers may be so fundamental and strong that their joint effects
must be studied simultaneously. One such case arises in multihop radio networks. In such
networks there is a clear need to maintain and update routing tables for point-to-point traffic (a
layer-3 OSI issue) and, at the same time, to resolve the multiple-access contention for the channel
resource among neighboring node terminals (a sublayer of layer-2 issue). If the routing tables
direct a lot of traffic through a portion of the network that is shared by many nodes, the broadcast
nature of the radio medium will force the use of a channel-access mechanism. This could introduce
substantially more delay in the overall end-to-end transmission process than an alternate set of
routes through sparser portions of the network would, even though those routes might be longer.
Thus what is best for a given radio network, as far as routing is concerned, depends on the
channel-access protocol that is used; it need not be the same as for a nonradio, "wire"-linked
network of the same topology in which there is no issue of channel access.

It is important to distinguish between the two major philosophies of channel access
mechanisms. These are (i) contention-based, and (ii) scheduled transmissions. In the first
category we have all variants of ALOHA, Carrier-Sense Multiple Access (CSMA), Conflict
Resolution Algorithms, etc.; in the second category we have basically contention-free schemes
such as Time-Division Multiple Access (TDMA), Frequency-Division Multiple Access (FDMA),
orthogonal Code-Division Multiple Access (CDMA), and reservation-based methods. Also, many
hybrids of these schemes have been developed in recent years. Studies have shown that in single-
hop applications, contention-based schemes perform well when traffic is bursty and traffic rates are
low. Scheduled-access schemes perform well when traffic patterns are regular, e.g., periodic.
However, it is difficult to make definitive conclusions on the performance of channel-access
schemes in multihop environments.

Contention-based schemes suffer from the possibility of excessively long and unpredictable
delays, especially during surges in the volume of traffic. To some degree, by using strictly
controlled forms of contention protocols these disadvantages can be mitigated. However in
multihop radio environments, the effects of contention can multiply rapidly across the network,
and may be difficult to control. In fact, the only versions of controlled contention protocols that
have been studied concern single-hop networks. For this reason, and although we do not rule
them out for later consideration, we exclude such protocols from our further investigations in this
report. Many of the issues associated with channel-access methods in multihop radio networks
were discussed in greater detail in Ref. 8, where it was concluded that contention-free channel
access methods are best for most broadcast networks. It was not possible to reach a definitive
conclusion for point-to-point networks, such as those being considered here, and the question of
which approach is preferable remains controversial. However, based on the considerations
discussed above, the use of scheduled channel access appears to be a reasonable approach to this
problem.

Therefore, we choose to focus on scheduled transmissions as the channel-access
mechanism in this report. In particular, we consider a time-division implementation (although it is
possible to introduce a limited degree of nonorthogonal CDMA in our approach to permit the
simultaneous activation of neighboring links). The main virtue of time-division-based scheduled

*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This report does not address broadcast networks in which the same information is to be delivered to all network members.
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transmission protocols is that they are conceptually more attractive than the equivalent forms of
their frequency- or code-based counterparts. Also, although they are not necessarily better than the
contention-based ones in terms of performance (the unresolved issue just discussed), their
performance can be assessed. The conceptual attractiveness of the time domain lies mainly in the
natural and fundamental features of time and the sequential form of transmission control.

Thus we consider now the fact that the choice of routes for point-to-point traffic in
multihop radio networks interacts with the choice of transmission schedules in each portion of te
network where neighboring nodes must multiplex their transmissions in time. For example, we
may consider a system in which the routes are specified in advance. In this case, the choice of
routes determines the amount of traffic that must be carried over each of the network's links, and
thus determines the communication requirements that must be satisfied by the channel-access
mechanism. Alternatively, we may consider a system in which the schedules are specified in
advance; in this case the problem becomes the determination of routes that use the predefined
schedules. The capacity of a link is then proportional to the number of times the link is activated in
one complete cycle of the schedule. The resulting set of link capacities can then be used as the
basis for the determination of an optimal set of routes. Both of these approaches assume that
something (i.e., either the routes or a transmission schedule) is specified in advance. In general,
these problems are not separable. Thus nonoptimal solutions are obtained by atempting to solve
them separately. In the true routing-scheduling problem, neither is specified a priori; both are to be
determined by the optimization process.

Despite the intimate relationships that exist between these network control mechanisms,
they are almost invariably addressed separately, resulting in network operation that may be far
from optimal. As stated earlier, the recognition of the importance of the coupling between these
two problems is relatively recent. In fact, the problem of best-schedule determination alone
(without considering the effect of routing) was only recently studied by a number of authors [1, 71,
and it was determined that, in almost all of its forms, it is a highly complex combinatorial-
optimization problem. It has been referred to as the pure scheduling problem. If, for example,
each node has a single transceiver and if a single frequency is used across the network (or
alternatively if nonorthogonal CDMA codes are used), the pure scheduling problem is indeed NP-
complete. In complexity theory, the term NP-complete describes the property that there is no
known algorithm of polynomial complexity that can solve the problem. Reference 2 provides more
details on the complexity of other forms of the pure scheduling problem.

Some instances of the pure scheduling problem are equivalent to the well-known problem
of graph coloring or finding matching sets of nodes (or links) in a graph. Both are well
understood and have been extensively studied in complexity theory. For example, a pure
scheduling problem can be posed as follows: letfi be the average traffic flow rate on link i, which
is given as a result of a separate solution of the routing problem. We would like to find a schedule,
i.e., a set of pairs (T, rj), j = 1, .. , N, where Tj is a set of links that can be activated
simultaneously without violating interference constraintst and j is the number of slots (or, simply,
the total amount of time) for which the links in Tj are allowed to transmit. The length of the
schedule is defined as

N

j::- I

The problem is to find the schedule with minimum length such that the given flowsfi can be
accommodated in the network. A solution to this problem was provided by Hajek and Sasaki [1,
and further studied by Tassiulas and Ephremides [31. The solution in Ref. I is not practical and

*Interference constraints can be variously defined, depending on the number of transceivers at each node, the form of
signaling used (e.g., CDMA). etc. In their plainest form they require simply that no two links adjacent to the same node be
allowed to transmit simultaneously.
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has only academic value (although it is crucially important to the subsequent development of the
joint routing-scheduling problem).

Thus, an effort was made to develop a heuristic solution that is based on a Hopfield neural
network (NN) [9]. The inspiration to do so came from the observation by Hopfield and Tank [221
that combinatorial-optimization problems similar to the famous Traveling Salesman Problem (see
Appendix A) could be solved efficiently by means of NNs of a certain special form. The results in
Ref. 9 were encouraging, and pointed us in the direction of using NNs for the overall problem of
joint routing and scheduling. In addition to the reasonably satisfactory performance results
reported for the pure scheduling problem, the nature of the algorithm that the Hopfield NN
implemented in that instance was such that it could be amenable to distributed implementation. We
especially note that distributed implementations of algorithms for routing and scheduling in radio
nets are very important and desirable. Of course, not all algorithms can be implemented
distributedly. In fact, the ones that are described in this report are not. Distributed implementation
remains an important goal for scheduling problems. Although distributed algorithms have been
developed for scheduling, the development of an optimal distributed algorithm remains an elusive
goal.

The next step in considering the joint optimization problems of choosing both the schedule
of transmissions and the routes for the traffic was defining the network evacuation problem. This
problem considers an initial amount of information residing at each node of the network that needs
to be delivered to a single, common destination. The desire is again to find a schedule (as defined
earlier) that accomplishes this delivery in minimum time. Implicit in the definition of this problem
is the selection of routes and their interaction with the transmission schedules. This problem was
studied in detail by Tassiulas and Ephremides [31.

It turns out that this problem is not as restricted as it may seem at first; it is equivalent to the
problem of sustained operation under steady (nonrandom) traffic flow generation at the source
nodes. In other words, the specified traffic levels may be interpreted as periodic communication
requirements (instead of simply quantities of traffic that must be eliminated from the network), in
which case the schedule developed for the evacuation problem could simply be repeated
periodically. It also turns out that the joint optimization decomposes into two separate problems
that are weakly coupled, one of schedule optimization and one of flow optimization (i.e., routing).
Specifically, the value of the length of the optimal schedule is known to be equal to the maximum
nodal degree in the network, where the degree of a node is defined as the total amount of flow into
that node plus the total amount of flow out of that node. Thus, minimizing the maximum degree
by choice of the flows solves the routing part of the problem in a way that couples it to the
scheduling problem.

This nice and encouraging result was based on a pivotal graph-theoretic observation first
made by Hajek and Sasaki [11 and then put to use by Tassiulas and Ephremides [3]. However, the
solution to the scheduling component of the problem remained as impractical as that in the original
pure scheduling problem. A somewhat further discouraging observation is that extending the
result to multiple destinations, although certainly possible, seems to be substantially more difficult
and has not been accomplished to date. Also, this result is based on the assumption that all links
have equal capacity. If they do not, new complications arise.

The formulation of the routing-scheduling problem that gave rise to even these limited
results also contains another important simplification, namely that the traffic flow is a continuous
variable and that the schedule lengths have arbitrary real values from a continuum rather than
integer values (multiples of a slot length). The practical version of the problem in which the units
of transmission are fixed-length packets has not been directly simplified in a manner analogous to
the methods used by Hajek and Sasaki and Tassiulas and Ephremides for the nonquantized case.

Finally, the ultimate joint routing-scheduling problem requires consideration of random
traffic generation patterns and not simply constant deterministic flows. Although this case lies
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beyond the scope of our report, it has been considered in some of its simpler forms (single tandem
topology, immediate neighbor destination, and some others) in Ref. 2 and gives rise to two types
of questions. The first type relates to stability and simply asks whether a schedule exists such that
the queues in the network do not increase without bound (for given average rates of exogenous
[i.e., externally generated] traffic injected into the network). The second type relates to optimality
in the sense of determining the schedule for which the usual weighted average delay performance
measure for end-to-end delivery is minimized. Preliminary results have been obtained for both
questions by L. Tassiulas in his recently completed Ph.D. dissertation at the University of
Maryland. By and large, however, the case of random traffic inputs remains a very complex
problem that is a subject of additional future research.

The conclusions that can be drawn at this point for the joint routing-scheduling problem are
that the problem remains basically unsolved, although it has been "dented" appreciably at various
corners. In this report we outline our effort to effect another dent at a corner that1 so far, has
remained untouched. Namely, instead of approaching the joint problem by first determining the
schedule of transmissions and then introducing the routing component in it (which is the way the
problem has been approached so far [1, 3] and has not yielded a successful resolution to the joint
problem), we considered doing the reverse. So we proposed to look at the route selection problem
first, and to bring in the scheduling aspect next. Of course, the plain routing problem has been
extensively studied in the literature, and is considered basically solved. A plethora of algorithms
and variants of them exist for determining good (or, indeed, optimal) routes under various
conditions of changing environments and limited information. However in considering the muting
problem here, we propose a version that already incorporates in some measure (albeit only
implicitly) the role and effect of the scheduling component. Namely, we assume that routes that
result in nodes with a high degree (i.e., routes that include nodes that are multiply shared by other
routes) are aggravating the scheduling problem, and are bound to introduce longer scheduling
delays. Therefore, we would like to strike a balance between routes that are "short," in the
traditional sense o route quality,* and "disjoint" to the extent possible (i.e., sharing as few nodes
as possible). We consider this to be a first step toward approaching the combined optimization
problem from the "other end," namely that of routing.

As is seen in the next section in which the specifics of our routing model are introduced,
we generally adopt the viewpoint that, for a given graph that reprsents a multihop radio network,
each source-destination pair is assigned a prespecified set of possible routes. These routes mesh
with each other in the graph, and each choice we make results in different numbers of shared nodes
amongst them. Clearly, we prefer to choose routes that are short (the pure-muting component of
the problem) and such that the number of shared nodes is small (which relates to the scheduling
aspect). In this formulation the problem becomes one of combinatorial optimization. For a
network with J source-destination pairs and K routes per pair, an exhaustive search would entail
scanning through K possible solutions; e.g., for K = 5 and J = 20, a problem of moderate size,
there are 9.5 x 1013 solutions. Although we have not formally proven it, we suspect strongly that
this problem is NP-complete. Thus we are naturally led to considering a Hopfield neural network
for its solution. Indeed, we have developed NN models for several versions of both the routing
and the scheduling components of our problem. In fact, we believe we have exploited the full
strength of the Hopfield NN approach by using several variations and improvements of the basic
technique. In particular, we have obtained excellent results in large, heavily congested networks
by using the method of Lagrange multipliers to dynamically determine system parameters. We
have also investigated the use of simulated annealing and a variety of heuristic methods to improve
performance. Appendix A provides background material on these methods. In the following
sections we describe in detail the models we have developed and their performance analysis and
evaluation.

*Usually, the "length" of a link in routing problems reflects a measure of message delay on that link that incorporates
propagation, transmission, processing, and waiting times. Frequently it is taken to be a constant, in which case we refer to
the problem as "minimum number of hops' routing.
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3.0 A HOPFIELD NETWORK TO MINIMIZE CONGESTION

We have found it advantageous to consider separately the routing and scheduling problems
before implementing a neural network (NN) for the complete joint scheduling-routing problem.
Although these problems are not independent, addressing them separately is expected to provide
reasonably good performance and to provide insight into an eventual design of a NN for the
combined problem. Toward this end, we have implemented a NN simulation that chooses routes
based on the criterion of minimizing congestion, and that indirectly takes into account the factor of
link scheduling effects. Once these routes are chosen, schedules can be generated either by using
NN methods that are applicable to pure scheduling problems as are discussed in Sections 8 - 11, or
by means of some (preferably distributed) heuristic such as those developed in Ref. 23.

In this section, we present a Hopfield NN model for the selection of paths between several
source-destination (SD) pairs in a packet radio network; in Section 4 we demonstrate its
effectiveness in large, heavily-congested networks. We start by presenting the basic energy
function and equations of motion that we have developed for the NN model of this problem.
Then, in the course of discussing the simulation process, we explain many of the design issues that
have been encountered and the techniques we have used to improve performance. For the reader
who is not familiar with Hopfield NNs, we strongly recommend that Appendix A, which provides
a discussion of the use of Hopfield NNs for combinatorial-optimization problems, be read at this
point to provide the necessary background material for this section.

3.1 The Problem

Given the connectivity graph of a radio communication network, a set of Nd SD pairs, and
a set of Npi) paths connecting SD pair i (1 < i • Nd), select a single path between each SD pair so
that network congestion, as defined in Section 3.3, is minimized. Minimizing congestion
encourages the activation of paths that do not share many common nodes, and thus reduces the
delay effect that the interference-free scheduling of the link activation induces. For simplicity, we
first consider a network in which equal traffic is specified between each SD pair. The assumption
that paths are predefined is often reasonable and corresponds to the prespecification of virtual
circuits that may be activated as needed.

The number of admissible solutions (i.e., unique sets consisting of one path between each
of the Nd SD pairs) is easily seen to be

Nd
fNp(i).
i=1

For the special case in which Np(l) = Np for all i (i.e., the same number of paths are defined for

each SD pair), the number of unique admissible solutions is (Np)Nsd. Thus, in this case, the
number of admissible solutions grows exponentially with the number of SD pairs, making
exhaustive search impractical in large examples. We strongly suspect that this problem is NP-
complete, although we have not formally verified this property.

3.2 Neural Network Model

The first step in formulating a Hopfield NN model is defining neurons that correspond to
binary variables in the system that is being modeled. In this section, we consider a Hopfield NN
in which one neuron is defined for each path between every SD pair.t For example, Fig. l(a)

*Alternate approaches are possible. In fact, in Section 5 we discuss a Hopfield NN formulation in which a neuron is defined
for every link of each path between all SD pairs.
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shows a very simple six-node network with two paths between each of two SD pairs, and Fig,
1(b) shows the corresponding path-neuron model. A double index is used to specify the neurons,
i.e., neuron (i represents the jth path between SD pair i. The neurons are analog devices, which
are characterized by an input-output relation that has the sigmoidal form

Vi; I [ + tanh -Jsi1

where uq and l/y are the input and output voltages, respectively, of neuron ij, and u is a parameter
that governs the slope of the nonlinearity. Since in every admissible solution one path is chosen
for each SD pair, exactly one of the 110's is equal to I for every value of i (which means that the
corresponding path is chosen), and the others are 0. In practice, since analog neurons are used, an
admissible solution will have one neuron per SD pair with an output voltage value close to 1, while
the others will be close to 0.

A key feature of these networks is, in fact, the analog nature of these processing elements,
which permits embedding discrete problems in a continuous solution space. Permitting the search
foran optimal solution to proceed through the interior of a continuous region yields better solutions
than are possible with strictly digital processing elements and determines them very rapidly when
the NN is implemented in hardware [221.

Si PI 32
Path between
SD pair I

Pat between
PIP n SDpair2

k =jpth path between

SD pair i
S 1

(a)

tli Neuo1 n Representing

T /,21 onnection

1,221

Fig. I - An example network: (a) shows a six-node communication network;
(b) shows the corresponding path-neuron NN model

Connections are established between all pairs of neurons. The NN evolves from some
initial state to a final state that represents a local (but not necessarily global) minimum of the
Lyapunov energy function, which may be written in terms of the connection weights, bias
currents, and neuron output voltages as

Nad Nad NP() NV) Nsd N/I)
1 gai = ~xx xE E X V , (2)T j - Y . V . )

i=1 k=i fri 1=1 hI= j=I
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where NP(i) is the number of paths between SD pair i. System evolution follows a trajectory of
monotonically decreasing energy, Etotal. In our model, the connection weights are symmetric
(i.e., T 1 ,ki = Tki,i); thus, in Fig. l(b) it is sufficient to show a single connection weight to
represent the interaction between each pair of neurons. The total number of neurons N is given by

Nsd

N =NANp(i).
i= 1

Thus an N x N connectivity matrix T can be defined, whose elements are the connection weights
Tijqk. Convergence to a stable state is guaranteed as long as the connections are symmetric [22], a
condition satisfied by our model. Except for some of our early examples, reliable convergence to
admissible states (i.e., states in which the constraints are satisfied) has, in fact, been achieved. In
our problem, as will be discussed later, the strengths of these connections are chosen to discourage
the sharing of nodes by many paths (i.e., limit congestion), while encouraging the correct number
of path activations (i.e., exactly one neuron turned on per source-destination pair).

The NN is "programmed" by implementing the set of connection weights and bias currents
that correspond to the function that is to be minimized. An analog hardware implementation of a
Hopfield NN will normally converge to its final state within at most a few RC time constants, thus
providing an extremely rapid solution to a complex optimization problem. In our studies (as in
most studies of this technique) we have simulated the system dynamics in software. Although
such software solutions are extremely time consuming, they verify the soundness of the use of the
Hopfield NN approach for optimization problems of this type and suggest that hardware
implementations may be worthwhile.

3.3 Congestion Energy

The class of objective functions that can be modeled by Hopfield NNs is normally limited
to those that can be expressed in the form of Eq. (2). This class includes weighted sums of the
products of pairs of neuron output voltages as well as output voltages taken individually.

For the case of continuous traffic and for a certain class of network topologies,* Hajek and
Sasaki [1] have shown that the selection of paths that minimize the maximum nodal degree (where
the degree of a node is defined to be the sum of all flows into the node plus all flows out of the
node) in the network permits the generation of schedules of minimum length. Clearly, this
performance measure cannot be put in the form of the desired Lyapunov energy function. Instead,
we have chosen to minimize the following measure of congestion, which is in the form of Eq. (2),
as required:

Nad Nsd Np(i) Npok)

Eb = -Y. X E jPijflP 1 VijVki,
2 i=1 k=l j=1 1=1

ksi

where

Piq is the jth path between SD pair i, and

I Pijr), J |is the number of nodes shared by paths Pij and Pki .

To facilitate the interpretation of this "congestion-energy" term) we first assume that an admissible
state has been reached. In this case, the congestion energy corresponds to the sum of the number

*Although the class of topologies for which this property holds initially appears restrictive, Tassiulas and Ephremides
[3, 24] have shown that it can easily be generalized to a broader class of networks.
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of common nodes of all selected paths (one for each SD pair), taken on a pairwise basis.
Minimizing this congestion energy loosely corresponds to selecting a set of paths that may be
scheduled in a minimal number of slots. Before convergence is reached, the neuron output
voltages take on values in the continuum [0W]. The congestion energy is the weighted sum of the
number of common nodes of all pairs of paths for different SD pairs in the network, where the
weights are the products of the corresponding neuron pair output voltages. As the system
converges to an admissible state, the output voltage of exactly one neuron per SD pair approaches
I while that of the others approaches 0; thus the congestion energy approaches that of an
admissible state in which one path is chosen per SD pair, as described above.

Note that Lb is actually minimized when all neuron output voltages are zero, which
corresponds to a state in which no paths are activated. The tendency of the E& term to turn off all
of the neurons is manifested by contributions to the connection weight matrix that are purely
inhibitory and whose strengths are proportional to the number of shared nodes in the two paths.
Thus constraints, which are discussed in the next subsection, are needed to ensure that the correct
number of neurons is activated.

By incorporating the constraints into the desired objective function, the energy function for
the minimization of congestion assumes the form

C NMd NQ)

Etotat = bEb + X XcEc - Vi) * (3>
c=1 x1tj^

The first term represents the network congestion, and is the function that we would like to
minimize, as just discussed. The second term represents the impact of the C system constraint
each of which adds zero energy when the corresponding equality constraint is satisfied and a
positive state-dependent energy when it is not. These equality constraints are incorporated into th
objective function by using the classical approach of Lagrange multiples.

The most critical issue in the design and simulation of a Hopfield NN model is the choice
of the coefficients used in the connection weights. In most studies of Hopfield NNs, the values of
the k,'s have been assumed to be constants, whose best values are typically determined by trial and
error in software simulations. In Section 4.7 we exploit the full power of the Lagrange multiplier
method by permitting the X,'s to evolve along with the system state. The last term of Eq. (3)
represents the impact of additional bias currents, which in our problem formulation are applied
equally to all neurons to help satisfy system constraints. The coefficients b, Xc, and I are all
positive.

Connection weights and bias currents are determined by transforming this problem-specific
form of the energy function into the generic form given in Eq. (2). This problem formulation is
quite similar to the one developed by Hopfield and Tank for the Traveling Salesman Problem
(TSP) [22]. Implementation of the system parameters defined in this manner results in a NN that
follows a trajectory over which the energy function E:to, decreases monotonically until a local
minimum is found. We have observed, as have other studies of Hopfleld NN models, that such
equilibrium points often correspond to low-energy values of the desired objective function Lb as
well.

3.4 Incorporation of Constraints into the Energy Function

The problem constraints and the corresponding terms in the energy equation (which must
each be equal to zero when the constraints are satisfied) are summarized as follows.
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1. Activate (select) no more than one path per SD pair:

Nsd NP) Np'i)

El = I I Y, I Vy;Vj1 = O.
2 = j=1 1=1

10]

This term provides a positive contribution to the energy function whenever two or more paths
between the same SD pair have nonzero voltage. It represents purely inhibitory contributions to
the connection weights.

2. Activate a total of exactly Nsd paths in the network:

[Nsd Npgi) 0
E2t ( xx NSd) = 0.

2i=l j-l

This term is zero when exactly Nsd neurons have output voltage values of 1. Its effect is excitatory
if an insufficient number of neurons is active and inhibitory if too many are active.

3. Activate exactly one path per SD pair:

NM [P~i) 2

E3=12 S(? Vij -) = o.

This term vanishes whenever exactly one path is chosen for each SD pair. Like constraint 2, it can
be either excitatory or inhibitory. Although this constraint appears to be redundant (because
satisfying the first two constraints would guarantee that it is satisfied as well), its inclusion in the
energy equation is helpful in achieving convergence to admissible solutions. The use of such
seemingly redundant constraints is common in Hopfield network models. Satisfying constraint 3
alone (along with a mechanism to guarantee that all nodes take on binary values) would actually be
sufficient for our problem. However, constraint 2 is useful because it imposes a greater penalty
when an incorrect number of neurons in the entire NN are set to 1; this is because it is a quadratic
form centered about Nsd, whereas constraint 3 contains Nsd quadratic forms each centered about 1.

Since the neurons are analog devices whose output voltages take on values in the
continuum between 0 and 1, these constraints cannot be satisfied simultaneously until, and unless,
a state is reached in which all output voltages take on binary values. It is possible for constraints 2
and 3 to be satisfied by a state in which more than N~d neurons are partially active (i.e., have
output values less than 1). This is why constraint 1 is needed to discourage the (even partial)
activation of more than one neuron per SD pair, it is also the reason that, in the neuron input/output
relationship, a relatively steep nonlinearity is used to force the neuron output voltages toward
binary values. Thus, although the system evolves through the interior of an N-dimensional
hypercube, the incorporation of these constraints into the energy function encourages the system to
evolve to "legal" or "admissible states," which are binary states in which the constraints are, in
fact, satisfied. Whether or not convergence to admissible states is achieved depends on factors
such as the X0 coefficient values, the initial state of the system, the slope of the input-output
nonlinearity, the time constants used in the iteration, etc. All of these factors are discussed later in
this section and, in more detail, in Section 4.
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3.5 Determination of Connection Weights and Bias Currents

Substitution of the expressions forE,, and the Er's into Eq. (3) yields:

Nad Nd Np41)1Npk) N, MA) N i)

E,,, = I I I IhirPukJVk + 2 X X X VlJV11
=il k=1 J=1 2=1 2i- l1=1 

k*i M

+ d Nk) Ve N +N) Nad Np(i)
X2 Ns~1=1 +-j Il -I v (4)

To determine the connection weights, we compare Eq. (4) with the generic form given in Eq. (2).
The energy function contains both quadratic and linear terms. The coefficients of the quadratic
terms, which involve products of the form VqVkp, correspond to connection weights of the form
TiyXg. Thus the connection weight Tjjt is the sum of all coefficients that multiply the product
VYjVkS in Eq. (4):

Tqk = -bIPinPk{(1-8} -k- 2.2 - 38k

where 5i (which equals I if i = k and 0 otherwise) is the Kronecker delta symbo4.

Similarly, the coefficients of the linear terms, which involve the Viyfs one at a time,
correspond to the bias currents. Thus Iij is the sum of the coefficients that multiply Vj.

In our simulation studies we have observed that an insufficient number of neurons are
typically activated, a problem that can be mitigated by increasing the bias currents. Hopield and
Tank observed the same behavior in their studies of the TSP [221. The need for additional bias
currents stems, at least in part, from the purely inhibitory nature of the congestion energy's
contribution to the connection matrix T. Thus additional bias current is needed to, in effect, a just
the neutral positions of the amplifiers. We have incorporated the additional bias current into
constraint 2, which can now be expressed as

E2 2 '= _ (XN-aNsd =0.

Setting the parameter cc to a value greater than 1 provides the additional excitation bias. A typical
value that we have used is a = 1.5, which is equal to the one used by Hopfield and Tank [221 in
their solution of the TSP. Incorporating the additional bias currents in this manner permits us to
setI = 0 in Eq. (3). The resultant expression for bias currents is

ij= X2aNsd + X3 

3.6 Equations of Motion

An equation characterizing the evolution of the input voltage at each neuron can be obtained
by examining the circuit diagram shown in Fig. A2. We have

s =_ + Z Y T ,kVktl + l.
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where T = RC (which may be set equal to 1 without loss of generality) is the time constant of the
RC circuit connected to the neuron. This relationship can be expressed in terms of the energy
function as follows:

duy1 _ aE,0 yS Ui- (5)

As the system evolves from an initial state, the energy function Et&,ai decreases monotonically until
equilibrium at a (local) minimum is reached. Since only a local minimum can be guaranteed, the
final state depends on the initial state at which the system evolution is started. The equations of
motion may be expressed in iterative form as

N.,d IV/k) N

ujAt+At) = uift) - (At)utJt) - (At)bX I I Pij1 kn l1vkl -(AOiX1 vil
k=1 2=1 1=1
k~i 2s

Nsd NAk) Npi)
-(At)X2X - Nsd) 1 (A- X3IE V'-1). (6)

This form is customary and appropriate for computation. A number of issues arise when
these equations are simulated in software. The most apparent is the need to choose the coefficients
in the weight matrix, i.e., b and the X,'s. Also important is the bias current parameter a.
Somewhat more subtle is the impact of the step size At and the nonlinearity parameter u,. The
ability of the state to converge to a good solution, or even to an admissible solution, depends
strongly on these parameters.

4.0 PERFORMANCE EVALUATION USING THE PATH-NEURON MODEL

In this section we discuss the major issues associated with the simulation of our NN
models, and we demonstrate the ability of this approach to find good sets of routes in large,
heavily congested networks.

4. 1 Basic Simulation Issues

The NN model described in Section 3 was simulated by using a program written in C++,
which was run on Sun-3 and Sun-4 workstations. The program reads a file that lists the nodes
traversed in each of the predefined paths. This information is used to build the NN model. The
system parameters used in determining the coefficients in T and the bias currents are contained in a
separate file to facilitate their modification as necessary. The process of "building" the NN is
completely automated; the operator is only required to provide the file that lists the paths and, if
desired, to edit the parameter file to adjust the system parameters. Thus, different problem
instances or networks can be quickly and easily analyzed.

The initial input voltage to each neuron ij is set so that the output voltage is equal to the
inverse of the number of paths between SD pair i. That is, to obtain an initial output voltage of
Vij(O) = l/N(), we set

uij(°) = uOt tanh-1(- -- -2

A small perturbation is then added to the initial input voltage of each neuron; addition of this
perturbation avoids the undesirable condition of a totally symmetric initial state [22]. The
perturbation quantity is a random deviate drawn from a uniform distribution on [-O.l,, 0.1It0]
and is different for each neuron.
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The equations of motion are iterated, allowing the NN to "relax" to a minimal enegy state.
It is important to note that system evolution is deterministic. The only randomness in the model is
that which is associated with the choice of the initial state.* For a particular set of parameter
values, the NN was typically run from 100 different initial states. To obtain different initial states
for a given problem instance, different seeds are passed to a random number generator so that a
unique sequence of random deviates is used to perturb the initial input voltages in each simulation.
A particular initial condition can be reproduced by, once again, passing to the random number
generator the seed that produced the original state. Since the system evolution follows a trajectozy
of monotonically decreasing energy, the initial condition determines which portion of the solution
space is actually searched, and thus which final state is reached.

The iteration is teminated when all neuron output voltages are within some specified value
e of the output voltage limi-ts 0 and 1 (event of convergence) or when a "time-out" is reached (event
of no convergence by a specified number of iterations). If convergence is achieved, those neurons
that have output voltages within e of 1 are declared to be "on," which means that their
corresponding paths are activated. The remaining neurons are declared to be ""off," and their
corresponding paths are not used. A convergence is "admissible" if the constraints are satisfied,
i.e., if exactly one path is activated for every SD pair.

4.2 Algorithm for the Determination of Path Sets

The paths for each SD pair were generated via an algorithm that finds highly node-disjoint
paths. This algorithm is based on the repeated application of Dijkstra's shortest-path algorithm
[25] as follows:

For each SD pair i, DO
{ Assign each node a weight of 1.

Repeat iterations times:

( Use Dijkstra's shortest-path algorithm to select a minimum-weight path between
SD pair i4 where the weight of a path is the sum of the weights of the nodes
in the path.

If the selected path is redundant,"*
then discard it;
else, list it.

Increase the weights of the nodes in the selected path by Nnodes, the number of
nodes in the network.

Thus, the first path selected is a shortest-hop path, and all subsequent paths share the
minimum possible number of nodes with previously chosen paths. In our examples we have used
iterations = 100. Because duplicate paths are discarded, as are paths that contain previously
discovered paths, the number of paths actually found may vary for each SD pair. The rationale for
selecting highly node-disjoint paths is that their use tends to provide a large number of options for
spreading the traffic among the network's nodes without requiring the study of all paths between
every SD pair. Clearly, there is no guarantee that all paths necessary for minimum-congestion

*Except for the case of using simulated annealing in conjunction with our NN model, as discussed in Sections 4.8.4 and
8.3A, which does result in nondeterministic system evolution.
tThe problem is routing to minimize congestion. An instance of the problem (a. problem instance) is a completely
specified example of the problem in which the network connectivity, the set of SD pairs, and the sets of path connecting
the SO pairs are given.
"t We define a redundant path to be a path that is either a duplicate of or contains a previously listed path. Note that the
shortestpath algorithm will not select a path that contains a previously listed path because this type of redundant path will
always have a larger weight than the shorter path it contains.
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solutions will be found, even for arbitrarily large values of iterations. Also, our algorithm does not
guarantee that a maximally node-disjoint set of paths is found.* However, our experience has
shown that this approach provides an effective heuristic for the determination of a good set of
candidate paths; this is discussed in Section 4.6.

4.3 A Binary Interpretation of the Analog State: An Instantaneous State
Description

A special feature of our problem is that exactly one path (neuron) must be selected for each
SD pair. This property can be exploited by declaring the neuron with the largest output voltage in
each SD pair to be "on," regardless of its actual output voltageJ Ties (i.e., equal output voltages)
can be broken arbitrarily, e.g., by choosing the lowest numbered neuron in such a set. Thus, at
any time in the NN evolution, an admissible solution may be obtained from the analog system state
by picking a binary state in this manner. We refer to this state as the "instantaneous" state of the
system. Tracking the instantaneous state permits the observation of the set of chosen paths as it
evolves over time. (The actual system evolution proceeds in the interior of the hypercube,
however. This mapping from an analog to a binary state at each step of the iteration is simply for
the purpose of assigning a binary interpretation to the state before convergence has been reached.)

We have found it advantageous to use this binary interpretation of the analog state to define
a "binary-instantaneous congestion energy," which is the value of Eb that would correspond to the
selection of the neurons chosen in this manner. Thus it is possible to track the evolution of the
energy of the binary state chosen by the NN from the initial state until convergence is reached.
Recall that although Ettnl decreases monotonically throughout system evolution, neither the actual
nor the binary-instantaneous values of Eb are necessarily monotonically decreasing.

The evolution of these instantaneously admissible solutions reveals that the final state is
usually reached relatively early in the simulation. Typically, many more iterations are then required
for all neurons to reach values within E of their binary values, and thereby allow termination based
on the criterion specified earlier. This observation permits the simulation to be stopped when the
set of chosen neurons does not change for a sufficient number of iterations (typically several
hundred). Our experiments using Lagrange multipliers that evolve along with the system state (to
be discussed in Section 4.7) have confirmed that, although the output voltage of a selected neuron
may be significantly less than 0.5 when this criterion is satisfied, continued iteration beyond this
point will eventually lead to a network in which that voltage very closely approaches 1. This early
termination criterion has been used in all of the path-neuron simulation examples presented in this
report.

4.4 Alternative Metrics

Although Eb is a reasonable metric to choose to minimize, there are also other metrics that
reflect a measure of congestion. It is desirable to track some of these metrics as well.
Unfortunately, certain types of desirable metrics cannot be implemented directly by using llopfield
NNs. For example, we noted in the previous section that under certain conditions, for which the
routing and scheduling problems are separable, a minimum-length schedule can be achieved if the
maximum nodal degree in the network is minimized. It is not possible to incorporate such a
performance criterion into the Lyapunov energy function framework, which consists of weighted
sums of the product of pairs of neuron output voltages and single neuron output voltages. A node-

*For example, the fact that the choice of the first path is limited to the set of shortest paths may make it impossible to find
a pair of node-disjoint paths, whereas an algorithm that chooses them simultaneously (or that modifies the first path
chosen as necessary) may be able to do so (see e.g., Ref. 26).

tThis criterion was also used by Kamgar-Parsi et al. in their studies of the "clustering" problem [27, 28], However, it can
only be applied to certain types of problems. For example, it cannot be applied to the Traveling Salesman Problem, which
requires that the set of neurons satisfy the permutation matrix condition, as discussed in Appendix A.
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based performance measure cannot be directly mapped to the individual neurons in the network
because each neuron corresponds to a complete path.

An alternate node-based metric that also penalizes heavily congested nodes is

= (nw-If,

where

N is the number of nodes, and
no) = max (number of paths that use node , 1).

Thus nodes that do not belong to any chosen paths do not contribute to ij. Our simulation results
show that performance under the vr criterion tracks quite well that based on the NN's natural
criterion of E&. Clearly, the values of these performance measures are not the same, and
minimizing one does not necessarily minimize the other. However, there appears to be a nearly
monotonic relationship between them.

4.5 Exhaustive Search as a Means to Assess System Performance

Since we do not possess an algorithm that guarantees the discovery of solutions with
minimum congestion (under any of the metrics we have discussed here), the only way to determine
whether a solution generated by the NN is, in fact, the minimum-congestion solution (or even a
good solution) is to perform an exhaustive search over the entire binary solution space. Such an
exhaustive search is possible only for relatively small problems. For example, it is possible for the
first 24-node network example we have studied (discussed in Section 4.6), which has
approximately four million different admissible solutions, but it is clearly not practical for the 100-
node network (discussed in Section 4.9), which has approximately 5 x i(35 different solutions

4.5.1 A Shortest-Path Heuristic

Since it is generally not possible to determine the minimum possible value of congestion, it
is difficult to assess the quality of the NN solutions. Thus we have also considered a "shortest-
path" heuristic, which appears to provide reasonably good solutions to our problem. The quality
of the NN solutions can then be compared to those produced by this scheme. The shortest-path
heuristic is simply an exhaustive search that includes only those paths between each SD pair that
are of shortest length. For example, if a particular SD pair is connected by three paths of length 5,
two paths of length 6, and two paths of length 7, only the paths of length 5 are included in the
search. Although the use of only shortest paths does not guarantee optimum solutions, our studies
have shown that the shortest-path heuristic performs reasonably well in many examples where a
comparison with the exhaustive search is possible. More importantly, as we show in this paper,
our NN solutions are generally somewhat better than the shortest-path solutions, thus
demonstrating the ability of our NN approach to provide good solutions to complex problems.

4.6 An Example 24-Node Network

The first network of significant size that we studied in detail was the 24-node network
shown in Fig. 2. This network has a diameter of 6, mean path length (i.e., the expected distance
between an arbitrarily selected pair of nodes) of 3.1 hops, and a mean nodal degree of 3.8
(assuming unit flow on each link). A set of 10 SD pairs that require the use of multihop paths was
selected from this network. The SD pairs are enumerated in Table 1. There are 62 nonredundant
paths between these SD pairs, from which 16,329,600 different admissible solutions can be
obtained. An exhaustive search of these solutions found that there are 48 different optimum
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Fig. 2- A 24-node communication network

Table 1. SD Pairs Associated with the Network of Fig. 2

Pair Source Dest. Pair Source Dest.
1 4 24 6 21 6
2 7 17 7 1 10
3 9 16 8 T_ TW_
4 v 1 19 9 2 12
5 5 11 10 , 14 8

solutions, which all have congestion energy Eb = 45. The use of the modified-Dijkstra's algorithm
with 100 iterations for each SD pair, as discussed in Section 4.2, produced a total of 51 paths
between the 10 SD pairs; the set of paths selected for SD pair 7 is shown in Fig. 2. A total of
1,990,656 different admissible solutions are possible for this example.* An exhaustive search of
these solutions also found that there are 48 different optimum solutions, which all have congestion
energy Eb = 45. Thus, for this example, the use of the modifled-Dijkstra's algorithm reduces the
solution space by more than a factor of eight without reducing the number of optimum solutions.
The best solution found by the shortest-path heuristic has Eb = 47. Thus the shortest-path heuristic
produces good (although nonoptimal) results in this example. However, our latest NN simulations
(see Section 4.8) have been able to produce optimal solutions for this network in almost all runs
from different random seeds. Typically, and especially for larger, heavily congested networks, we
show that NN solutions can be significantly better than the best solution obtained by using the
shortest-path heuristic.

*For one of the SD pairs, only one path was found. In our NN simulations we have added an additional path between that SD
pair, which had not been selected by our path-selection algorithm because it contains the previously discovered path. The
purpose for its inclusion, thereby raising the total number of paths to 52 and the total number of admissible solutions to
3,981,312, was to make the problem somewhat harder by requiring our NN model to make a decision on the path selection
for that SD pair. It is significant to note that the NN always chose the shorter path. Here, the length of the path is not of
primary importance, but rather the fact that the choice of the longer path cannot provide a lower measure of congestion
energy than the choice of the shorter path because the longer path contains all of the nodes in the shorter path plus
additional ones.

19



WIESELTHER. RARNHART, AND EPHREMIDES

4.6J1 The UseofMean-FieldAnnealing

In our preliminary studies, the coefficients used in the connection weights were deternined
by trial and error, as is common in studies of Hopfield NN models [221. It was difficult to find
good parameter values that would lead to reliable convergence to low-energy solutions. Improved
results were obtained by using a form of mean-field annealing (MFA), similar to the method
described in Ref. 29. This method involved gradually steepening the slope of the nonlinear neural
input-output relationship by decreasing the parameter us0 with time according to is = 10/(c+urTu) if
uO < uo', and u, = o' otherwise. The parameter c sets the value of u0 at time t = 0, 'c controls the
rate at which the nonlinearity is steepened, and u4, is the minimum allowed value of uO (which
results in the maximum slope of the nonlinearity). The initial use of a smaller slope in effect
permits one to make preliminary approximate decisions on the states of the neurons, thus
postponing the final decision until a more thorough search of the interior of the search region has
been performed. The use of a steeper nonlinearity in the later stages results in neuron output
voltages that are closer to binary values. Thus it is more likely to reach an admissible low-energy
(although not generally globally optimal) solution. However, a solution with a minimum value of
Eb was found only once by using this approach. We then focused our attention on the use of the
method of Lagrange multipliers, which has proven to be a powerful method to obtain reliable
convergence to low-energy solutions. In Section 4.8.2 we compare the results obtained by using
MFA with those obtained by using two versions of the Lagrange multiplier method. Performance
results are shown in Figs. 5, 6, and 7.

4.7 Use of the Method of Lagrange Multipliers to Determine Connection Weights

Wacholder et al. [30] and Platt and Barr [311 observed that the energy expression
corresponding to each equality constraint can be used to dynamically update the corresponding
connection coefficients by the method of Lagrange multipliers (LM). With this method, each of the
Xe's becomes a variable coefficient (Lagrange multiplier) that, at each iteration, is increased by an
amount proportional to its corresponding constraint energy evaluated in the previous iteration.
That is, at the (n+l)st iteration, we have

j(n+l) = Xc(n) + (A>E,$(n),

where (At); is the LM step size, which is chosen independently of the step size At in Eq. (6). Note
that, since E Ž 0, the quantities Xc are monotonically nondecreasing. Typically, the Lagrange
multipliers are assigned initial values of 1.

The use of time-varying LM makes it inappropriate to include the additional bias current
term in the second equality constraint? Thus we set a = I and include an additional bias current
term I, which is positive, in each of the equations of motion.

The most obvious advantage of the method of Lagrange multipliers is that it eliminates. the
need to perform a trial-and-error search for the best system parameters. Such a search is especially
time-consuming in large networks because many (e.g., 100) runs with different random initial
conditions are typically needed to assess the performance achievable when a particular set of
parameters is used. In addition, based on our application of this method to routing problems, we
suspect that the dynamic nature of the X's provides better performance than the use of the best set
of coefficients with constant values. This is because the relatively small initial values of the Vs
permits the search to emphasize somewhat the desire to minimize the performance index (network
congestion) during the early part of the iteration. Toward the latter part of the iteration, the
increased values of the X0's more heavily penalize system states in which the constraints are not

"Recall that the parameter a was introduced for this purpose. Since the Lagrange multipliers change (they re
monotonically nondecreasing), a value of a greater than I would correspond to an increase in the additional bias current
that is proportional to the corresponding Lagrange multiplier.
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satisfied; thus the neuron voltages move closer to binary values, and yield admissible equilibrium
states.

4.7.1 An Alternate Formulation with Multiple Lagrange Multipliers

Examination of the third constraint energy term E3 suggests that it may be advantageous to
define a separate Lagrange multiplier for the constraint applied to each SD pair. Doing so would
increase the LMs associated with those SD pairs that were unsuccessful in turning on exactly one
neuron. We call this the method of "multiple Lagrange multipliers" (MLM).

The third constraint formulation can be rewritten as

N~sd

E3 e3i = 0,
=11

where each of the terms of the form
Np(i)2

e3i -- I Vii 1 = 0

is an equality constraint specifically for SD pair i. Now Lagrange multipliers are defined to
correspond to each of the e3i's, and they evolve as

X3,{n+l) = .31(n) + (At \e3i(n).

4.8 Simulation Results of a 24-Node Network Using the Method of Lagrange
Multipliers

In the following subsections, the results of simulations of the 24-node network described
in Section 4.6 are used to demonstrate the effectiveness of the use of LM (Section 4.7) and MLM
(Section 4.7.1) in conjunction with the path-neuron model. In the simulations, optimum
solutions* were found at least 96% of the time, and the remaining solutions were nearly optimum.

4.8.1 Results Obtained Using the LM Method

The 24-node network was examined by using LM and the following parameters [Xc(0) is
used to denote the initial Lagrange multiplier value]:

IXc(o)I b || I' At I(At)k ||uoI el|

1.0 0.5 1.0 2.1 0.005 0.01 0.1 0.01

With the use of the method of Lagrange multipliers, we have found that, if\given sufficient time,
we are virtually guaranteed convergence to an admissible state (without having to rely on the
instantaneous state description). Furthermore, the instantaneous state usually reaches its final
value relatively early in the simulation, although the convergence criterion based on the quantity e
is usually not satisfied at that time. Thus, use of the early termination criterion is indicated. In this
and the following simulations, we terminate a run after 500 iterations without a change in the
instantaneous state, or when all the neuron output voltages reach values that are within e of binary
values. In conjunction with this criterion, the use of the small e value listed in the table prevents
premature termination of the simulation, which might result in a poor-quality solution.

Optimum solutions are admissible solutions that have the minimum congestion-energy (Eb) value.
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All of the solutions resulting from simulations from 100 different initial states were better
than the best one found by using the shortest-path heuristic (for which l= 47); 97% of the
solutions were optimum in terms of congestion energy (4 = 45X and the remaining 3% were
worse by only one unit. In the 97 optimum solutions, 6 different states (sets of selected paths)
were found. Two different states were found that had 4 = 46.

The fact that several different optimum solutions were found further confirms that the use
of different random seeds results in the search of different regions of the state space. We noted in
Section 4.6 that there are actually 48 different optimal solutions out of the approximately 4 million
total admissible solutions for this problem.

The evolution of the constraint energies and the Lagrange multipliers from one of the
simulations is shown in Figs. 3 and 4. These results are typical in that they show that the
instantaneous state converges relatively rapidly, although convergence to a state in which the
output voltage of all neurons is within some c-value of binary values may take a very large number
of iterations, as noted in Section 4.3. In Fig. 3, all three constraint energies initially decrease
rapidly, with El (which corresponds to the activation of no more than I path per SD pair) reaching
a value very close to zero in about 250 iterations.t After 250 iterations, the NN state is relatively
stable, although the values of £2 and E3 are still relatively large because many of the neuron output
voltages are far from binary values. As the iteration continues, the rate of decrease in the values of
E£ and £3 slows to an asymptotic approach toward zero. Figure 4 shows that the high initial
constraint energies cause rapid initial growth of the Lagrange multipliers. The growth of XI
virtually ceases when the corresponding energy reaches a value close to . The asymptotic decay
of £2 and £3 continues to cause X2 and X3 to grow slowly throughout the duration of the
simulation.

4.8.2 Results Obtained Using the MLM Method

The simulations of Section 4.8.1 were repeated by using MLM with the initial value of each
of the k3; set to 1.0. Figures 5, 6, and 7 present the results of this simulation compared with those
from Section 4.8.1 and the best results from early studies using MFA and constant coefflcient'
as discussed in Section 4.6.1. In Figs. 5 and 6 the comparison is on the basis of congestion
energy. These figures show that the use of MEM produces results that are slightly inferior to those
produced by the use of a single EM for the third constraint. The histograms of Fig. 5 show that
optimum solutions (solutions with Eb = 45) were found 97 times using the LM method and 96
times using MLI. In contrast, only one of the solutions found when using constant coefficients in
conjunction with MFA was optimal.

We acknowledge that the relative lack of success using MFA with constant connection
weights does not necessarily prove the ineffectiveness of this method; it is certainly possible that
better results might have been obtained by using different values of the coefficients or MFA
parameters. However, our experience has shown that a significant amount of trial and error is
needed to determine the best set of system parameters and that they appear to depend strongly on
the particular problem. In contrast, the method of Lagrange multipliers requires relatively little
parameter adjustment when considering networks of highly varying size and connectivity, as is
shown later.

*This simulation was forced to run trough 10,000 iterations so that the evolution of the constraint energies and the
Lagrange mnultipliers could be observed. The use of the early tenmination criterion would have allowed the termination of
the run after 775 iterations.
tNote that a very small value of El by itself, does not guarantee that the instantaneous state has reached its fina value.
Therefore, we base the termination criterion on an unchanging instantaneous state.
"The parameter values for the simulations using MFA were the same as those listed in Section 4.8.1. In addition, the

following MFA parameters were used: c = 1,,Ta = 1, and t, = (.1.
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Figure 6 shows the cumulative mass functions of the results shown in Fig. 5. In our
simulation runs that used LM or MLM, all of the solutions have congestion energy ELb 47 with
the use of constant coefficients and MFA, all of the solutions have congestion energy values that
are less than 59.

2

4:,

'U

a

44 46 48 50 52 54
Congestion Energy Eb5

56 58 60

Fig. 6- Cumulative mass functions of the results shown in Fig. 5

Figure 7 compares the quality of the same results measured with the V metric discussed in
Section 4.4. Under this metric, the use of MLM provides the best results, and, again, the use of
either form of Lagrange multipliers gives much better results than those found by using MFA and
constant constraint coefficients. The most important conclusion from these results is that the use of
LM or MLM, besides giving 100% admissible convergences, yields significantly better solutions
than those obtained with MFA in conjunction with constant constraint coefficients.
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Fig. 7 - Histograms of the results of simulations of the 24-node network

in terms of the v metric (optimum v = 62)

These results show that solutions with low values of congestion energy also tend to have
low values of V. However, minimization of Eb does not guarantee a minimum value or V, and the
relationship between Eb and v is not monotonic.

4.8.3 Combined Use of MFA and LM Techniques

Our attempts to combine the LM approach with mean-field annealing have shown that these
two methods do not work well together. The apparent reason for this lack of synergism is that the
LM technique works well only when a relatively steep input-output nonlinearity function is used,
This is because use of a small slope results in a large region of input voltage values that do not
produce (nearly) binary output values; consequently it is more difficult to satisfy the system
constraints.

4.8.4 Use of Simulated Annealing to Searchfor the Global Minimum

Simulated annealing is a technique in which noise is added to the system throughout its
evolution to permit the escape from local minima, with the goal of eventually finding the global
minimum. Appendix A and Refs. 32 and 33 describe its use in conjunction with Hopfield NN
models. Our use of this method produced highly mixed results. Although optimal solutions were
occasionally found by using simulated annealing in conjunction with LM, most solutions were not
as good as those obtained by using the method of LM alone. Reference 15 provides further
details.

4.9 Simulation Results of a 100-Node Network Using the Method of Lagrange
Multipliers

The 100-node network shown in Fig. 8 was used to evaluate the NN's ability to handle
larger networks. The network, which was randomly generated, has a mean nodal degree of 2.9
(assuming unit flow on each link), mean path length of 4.6 hops, and a diameter of 10. A set of
40 SD pairs was arbitrarily selected (and are enumerated in Appendix B of Ref. 15), and sets of
maximally node-disjoint paths were found for each SD pair. A total of 327 paths were found,
yielding a network with approximately 5 x 1035 different admissible solutions. Since an exhaus-
tive search of this network is prohibitive, a random search of 2 x 106 samples was performed to
give a reference performance level for NN evaluation. The lowest congestion-energy value found
by the random search was Eb = 567. The shortest-path heuristic solution had Eb = 313.
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Fig. 8- A 100-node communication network

Simulations of both the LM and the MLM models were performed from 50 different initial
states with the following parameter values:

X~(0) X3 O) 1b a jIjf At I (At) l UI
1. 1. 0.5 1. 5.0 00009 0.01 0 .1 | 0.01

The results of the simulations are compared in Fig. 9. The largest congestion-energy value found
using either LM or MLM was 303, which is 10 units less than the shortest-path heuristic solution.
The best solution found by any method had Eb = 291 and was found using the LM NN. Although
the LM and the MLM NNs yield results in the same range, Fig. 9 shows that the use of a single
LM for the third constraint yields slightly better results than the MLM formulation.

0.5
ELM

0.4 'MLM

0, .

S -. .................. 

Congestion Energy Eb

Fig. 9- Results of simulations of a 100-node network
using ihe LM and MLM mo&ls
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4.10 Nonunit Traffic and Alternate Routing

Thus far it has been assumed that a single route is selected to carry the entire amount of
traffic between each SD pair, and that the traffic requirements are uniform, i.e., the same between
each SD pair. Thus, in our problem specification, it has been sufficient to require the delivery of a
single unit of traffic between each SI) pair. It is known, however, that alternate routing, i.e.,
splitting the traffic over two or more routes, can be advantageous. To permit alternate routing, we
can divide the basic unit of traffic into m subunits, which can then be divided between two or more
paths.

In an effort to demonstrate the benefits of alternate routing, the traffic requirements between
each SD pair were increased. To accommodate m units of traffic on the ith SD pair, m replicates of
each of the neurons ij, j = 1, ..., Npi), which represent paths between SD pair i were created and
treated as distinct paths between new, independent clones of the same SD pair. With the additional
neurons installed, the problem has been transformed back to the unit-traffic routing problem. The
same constraints and optimization connections used for the unit-traffic example are used here as
well.

4.10.1 Triplicate 100-Node Network

Three units of traffic were placed on each of the 40 SD pairs of the 100-node network (Fig.
8), resulting in a NN model consisting of 981 neurons. Again, it would be desirable to determine
the shortest-path heuristic solution, which could serve as a benchmark against which to compare
our NN solutions. Unfortunately, the number of shortest-path solutions in this example makes an
exhaustive search of them prohibitive; there are 15552 shortest-path solutions for the unit-traffic
problem, which results in 155523 = 3.76 x 1012 shortest-path solutions to the triple-traffic
problem. However, a useful benchmark is the performance achieved by sending all three units of
traffic on the set of paths determined by the shortest-path heuristic solution to the unit-traffic
problem. The congestion energy of this solution is Eb = 3543.

Simulations using LM and the following parameter values were run from 20 different initial
states.

xI(o) b 11 I At (At)x u0 e

I 1. 0 0. 5 11 1.0 ol5.0 o.oooil 0.01 ii0.1 I 0.011

The triple-traffic solutions had congestion-energy values Eb that ranged from 3349 to 3417.
In the best triple-traffic solution, the NN split the traffic at seven SD pairs. To determine whether
any benefit was actually obtained by the triplication of neurons, these results were compared with
those obtained by using the unit-traffic formulation. First, we considered the simple triplication of
the best unit-traffic NN solution. This resulted in a value of Lb = 3381. Eight of the 20 solutions
obtained by the triplicate network had lower values of Eb, once again demonstrating the benefits of
alternate routing.

The results of the triple-traffic NN model were also compared to those obtained by
combining three of the unit-traffic solutions. A search of all possible combinations of three
solutions obtained from the NN with unit traffic (only solutions with the lowest value of EL were
considered, and duplicates were permitted) resulted in a best solution that had a congestion energy
of Eb = 3368. Although this was better than the solution obtained by simply triplicating the best
solution for the unit-traffic model, it was still not as good as that obtained by the NN that was
programmed for three units of traffic.

Although the improvement obtained by triplicating the neurons in the network was not
dramatic, it is significant in that we are unaware of other methods to find better sets of paths.
Perhaps even more noteworthy is the capability of the NN model to handle such a large network
and to provide good solutions for a reasonably large percentage of the initial states. It is significant
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to note that, although some adjustment of system parameters was necessary when studying
networks of different sizes under the LM method, such adjustments were typically limited to time
constants and bias currents, for which acceptable values were determined relvely quickly.

The capability to determine good solutions to large examples and the robustness of the
model when presented with problems of varying size indicate that the solutions scale well with
increasing problem sizes. Good scaling properties were also observed by Kamgar-Parsi et al. [27,
28] in their NN studies of the clustering problem. They attributed this behavior to the nature of the
constraints in their problem, which permitted an instantaneous state description similar to the one
we have used in this study. An example of a problem that does not scale well is a Hopfleld NN
implementation of the Traveling Salesman Problem. The source of difficulty in that problem is
apparently the fact that the neurons must satisfy the permutation matrix constraint, which does not
readily admit such an instantaneous state description. The link-activation scheduling problem,
which we discuss in Sections 6- 11, appears to fall somewhere between these two extremes in
terms of scalability properties.

4.10.2 Nonuniform Traffic in the 100-Node Network

To assess the ability of the NN model to route nonuniform traffic so that congestion is
minimized, an arbitrary number of units of traffic were placed on each of the 40 SD pairs in the
100-node network (Fig. 8). Two different nonuniform network loadings were created. Both had
traffic levels of I to 4 units on each SD pair. In the first example, a total of 100 units of traffic was
specified, resulting in a total of 823 neurons. In the second example, the total traffic was 105
units, resulting in 872 neurons. Both of the loadings were briefly analyzed by using the NN
model with LM and the parameter values listed in Section 4.10.1. The solutions did contain traffic
splitting, and gave lower congestion energy than would have been obtained by placing all traffic on
the best unit-traffic solution paths.

The case of nonuniform traffic is considerably more interesting ta that of uniform traffic.
First, this case is more likely to arise in practice. More importantly, it does not appear that good
results are often obtained by simply using the single paths obtained for unit-traffic requirements,
although this approach worked fairly well for the uniform-traffic example. Since the demands
placed on the network by nonuniform traffic are quite different from those of uniform traffic, it
appears that they cannot be satisfied well unless these traffic requirements are programmed into the
NN formulation.

4.11 A Modified Form of the Congestion-Energy Function

The development of aNN model that defines a neuon for each link of every path, which is
discussed in Section 5) has motivated our examination of a minor modification to the method used
for calculating Eb. It was observed that it is not possible to make a direct comparison between the
results obtained under the path-neuron and link-neuron models when the original formulation of Eb
is used because the measures used to define congestion energy in these two cases are not totally
consistent with each other. Thus a modified performance measure, which is denoted as Eb', has
been developed. When Eb is used as the performance measure, the resultant congestion energy
for any particular solution under the path-neuron formulation is directly proportional to that under
the link-neuron formulation, thus pennitting a direct comparison of the solutions obtained by using
these two approaches.

The modified calculation uses a slightly more involved method of counting shared nodes
that weights each occurrence of a shared node according to the "node type."" A node that is shared
by two paths is one of three types:

A type-I shared node is an intermediate node (.e., neither a source nor a destination) in,
both paths and receives a weight of 1.
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* A type-2 node is an end-node (a source or destination) for one path and an intermediate
node in the other path and receives a weight of 0.5.

* A type-3 node is an end-node for both paths and receives a weight of 0.25.

Thus Eb' has the same form as Eb, except that I PijrnPk j, which was originally defined in Section
3.3 to be the number of nodes shared by paths Py and Pk,, is now replaced by

| PijrPnj' = the number of type-I nodes shared by paths Pi and Pu
+ 0.5 (the number of type-2 nodes shared by paths Py and Pk&)
+ 0.25 (the number of type-3 nodes shared by paths Py and PO).

This weighting scheme is somewhat arbitrary, but it appears to be reasonable because it assigns a
heavier weight for nodes that require more slots. In particular, it reflects the fact that intermediate
nodes must support both input and output flows, whereas the source and destination nodes support
only one or the other.

An exhaustive search of the 24-node network (Fig. 2) based on the modified congestion
energy metric (Eb) found that the best solutions have Eb'= 33.25.* In a series of 100 runs of the
NN model with the modified Eb' formulation, all of the solutions were one of two different states
that both had Eb' = 33.75, which is greater than the optimum value by 0.5.

4.12 Conclusions on the Path-Neuron Model

We have demonstrated the power of our path-neuron Hopfield NN model to choose sets of
paths that provide low levels of congestion in relatively large, heavily congested networks.
Optimal or nearly-optimal solutions were found in many of our examples. In this concluding
subsection, we summarize our results qualitatively, and we attempt to put our studies of the path-
neuron NN model into perspective.

The most critical issue in the design and simulation of a Hopfield NN model is the choice
of the coefficients used in the connection weights. In our early studies, they were determined by
using a tedious trial-and-error approach. It was found that the use of mean-field annealing
(gradually increasing the slope of the neurons' input-output nonlinearity) in conjunction with
constant coefficients provided greatly improved performance over the performance achieved by
using an unvarying nonlinearity. However, the solutions found in most of the NN runs were not
as good as the solutions found by the shortest-path heuristic. Furthermore, the need to determine a
new set of coefficients for each network configuration, and our inability to find a method to
automate the procedure for determining these coefficients, limit the general applicability of this
method.

Dramatic performance improvement was obtained by using the method of Lagrange
multipliers, which permits the coefficients to vary dynamically along with the evolution of the
system state. In the early stages of a simulation run, the congestion-limiting component dominates
the connection weights, guiding the search toward a region of low congestion. As the run
progresses, the impact of the constraints guides the solution toward an admissible state with binary
neuron values. The use of dynamically varying LMs provides better performance than would be
possible through the use of an optimal set of constant connection-weight coefficients because of
this ability to emphasize congestion control in the early stages and constraint satisfaction later on.
Use of this method has provided optimal or near-optimal solutions in many of our examples. We
have noted that the model scales well with increasing problem size, with relatively little need for
change in system parameters.

Congestion energy is lower under the new metric because type-2 and type-3 nodes arm weighted less than type-I nodes.
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The fact that global minima are not always found, a common characteristic of Hopfield
NNs, is typical of heuristic algorithms for solving difficult combinatorial-optimization problems; in
many such problems, optimal solutions cannot be guaranteed without exhaustive search.
However, the inability to guarantee a global optimum is mitigated by the fact that repeated runs are
possible from different initial conditions; thus the best solution that is found can be chosen as the
solution to the problem. Although the simulation runs begin in random initial states, this method is
not simply one of random search; system evolution is guided by the equations of motion, which
are derived from the energy function, which in turn is based on the objective function and the
system constraints. The fact that most of our solutions are so close to the optimum value in such a
large fraction of the cases studied demonstrates the robustness of our models, and suggests that
they may perform well in considerably larger examples as well.

In conclusion, we have demonstrated the effectiveness of our Hopfield NN model for
minimizing congestion in large, heavily congested networks. In particular, the use of the method
of Lagrange multipliers, under which the coefficients in the connection weights evolve dynamically
along with the system state, provides highly-robust operation. Ultimately, our goal is to develop
NN models for the joint routing-scheduling problem. As a step toward this goal, in Section 5 we
discuss an alternate NN model in which a neuron is defined for each link along every path in the
network.

5.0 A LINK-NEURON NN FORMULATION FOR THE MINIMIZATION OF
CONGESTION

Ultimately, it would be desirable to develop a NN model for the complete joint routing-
scheduling problem. Such a NN would not only choose paths between each SD pair, but would
also determine the particular time interval in which each link along a selected path is to be activated
so that destructive interference does not occur. Thus system modeling must reflect the behavior of
each individual link, a level of detail that the path-neuron formulation discussed in Sections 3 and 4
does not provide. In a step toward this goal, we have developed an alternate formulation of the
congestion-minimization problem, in which neurons are defined for each link along every path,
rather than one for each complete path. We also note that the link-neuron formulation may be
viewed as a first effort toward the solution of the more general routing problem in which paths
between each SD pair are not specified in advance; in this case the NN must piece together
complete paths from individual links.

The link-neuron formulation of this problem is similar to the path-neuron formulation in
that the same basic constraints hold and the optimization goal is again to minimize congestion.
However system modeling and simulation is somewhat more difficult, because the interactions
among individual links rather than among complete paths must be considered. The most obvious
complication is the much greater number of neurons and interconnections that are needed to el
the system. A further complication is the need to ensure that complete paths are formed.

In this section, we reformulate the congestion-nminimization problem by developing a link-
neuron Hopfield NN model. The development follows the same basic procedure as that for the
path-neuron model. An energy function is derived that incorporates both the minimization of
congestion and the problem constraints. The method of Lagrange multipliers is again used to
dynamically determine the connection weights. Performance results demonstrate the soundness of
our approach. Studies of the same 24-node network considered in Section 4 show that complete
paths are formed reliably and that good, although not optimal, solutions are usually found.

5.1 The Basic Link-Neuron Model

In the link-neuron model, a neuron is defined for each link of every path. A triple index is
used to specify the neurons, e.g.. neuron ijk represents the kth link in the fth path between SD pair
i. The input and output voltages of neuron ijk are denoted uqk and 1/qt respectively. Figure 10(a)
shows the same example six-node network with two paths between each of two SD pairs used in
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Section 3.2 to describe the path-neuron model. Figure 10(b) shows the corresponding link-neuron
NN model. In Fig. 10(b), the upper horizontal plane defined by neurons ljk ( e ( 1, 21, k e ( 1,
2, 3)) contains all the neurons that represent links between SD pair 1, and the lower plane contains
all the neurons 2jk that represent links between SD pair 2. Several neurons may correspond to the
same physical link in the NN model. For example, neurons 221 and 122 in Fig. 10(b) both
represent the physical link connecting nodes 4 and 5. The connection weights shown in the figure
are discussed in Section 5.3.

Sti! Ye 2,12 Dc2
X b-m- Link between SD pair 1

121 21 2/ 112 - - _ Link between SD pair 2
AW\KI Indicates the third link in the

second path between SD pair 2

(a)

C = Neuron representing link 123

Connection Weight Legend:
Duplex Asymmetric Connections

X 4 X

L(in) L ij)
X2 connections which are present between

22 22 9 all pairs of neurons are not shown.
Duplex Symmetric Connections

-b
a - - - -'-2b

(b)

Fig. 10- An example network: (a) shows a six-node communication network;
(b) is the corresponding link-neuron model

Following the same basic procedure used in the development of the path-neuron model in
Section 3, the generic form of the Lyapunov energy function can be rewritten as

N Noa Np(i) Npm) L(ij) L(mn) Na Np(i) L(ij)

Erotat = -2 X- X X. X X X TijkmnoVijkVmno - X X lijkVijk t (7)
2 i=1 m=1 j=i n=l k=1 o=l i=1 j=l k=l

Here, Np(i) is the number of paths between SD pair i; LQj) is the length in hops of the jth path
between SD pair i; Tijk,,,mo is the connection weight between neurons ijk and mno; and fijk is the
bias current applied to neuron ijk.

As in the path-neuron model, the link neurons are interconnected in a manner that enforces
the problem constraints and that tends to reduce congestion. The connections are derived from an
energy formulation in a manner similar to that of Section 3. However, the particular characteristics
of the link neurons are incorporated into the model. The total energy can again be expressed as the
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weighted sum of the congestion energy, the energies associated with the constraints, and energy
resulting from additional bias currents as follows:

C Na Np(i) L(J)

=tl bE, + £ XcE£ - 12 2 2 Vjk(
c=1 i=1 fri k=1

Again, b is a constant coefficient that weights the relative priority given to optimization, as
compared to constraint satisfaction. The Xc's are the connection coefficients for the constraint
terms. The additional bias (I) term, as in the path-neuron formulation, provides a neutralizing shift
in the activation level.

After a discussion of congestion energy and the system constraints, we present the
resulting expressions for the connection weights and bias currents. Then we present our
simulation results. Again, the method of Lagrange multipliers is used to permit the hcs to vary
dynamically along with the system state.

5.2 Congestion Energy

Recall that in our studies of the path-neuron model we considered two congestion energy
functions, Eb and Eb'. Under the Eb criterion, the strength of the component of the inhibitory
connections resulting from the congestion-energy term is proportional to the number of common
links in tie two paths. Under the Eb' criterion, a distinction is made between intermediate and
terminal nodes along the paths to reflect their different requirements for transmission slots.

In the link-neuron NN model, interaction takes place between individual links on a pairwise
basis rather than between entire paths (as was the case in the path-neuron model); thus congestion
enters the system dynamics in terms of the pairwise interaction of individual links.

The expression for the congestion energy in the link-neuron formulation is essentially the
same as that in the path-neuron formulation, i.e.,

Nad Nd Ndi)N(m) LiJ)L(mn)

El = IX XX X 2 iAijkflAmjoIjVijkVmno,
i-=1 m=1 j=1 = k=I =1

where

Auik is the kth link in the jth path between SD pair i, and

IA ijfAmno I is the number of nodes shared by links Ajk and Am,w>.

Note that IA;jknA>, I can take on only the values 0, 1 and 2. This quantity is 2 if the links Aq*
and A, share the same physical link (in which case they share two nodes), and it is I if the links
share a single common node. Figure II illustrates these two situations. When the two links have
no common nodes, IA itnA, I = 0. Based on this model, it is straightforward to determine the
contributions to the connection weights that are associated with the congestion-energy term (which
again represent inhibitory connections), where the coefficient b is again used to weight the
congestion-energy term. If two neurons from different SD pairs share the same physical link, an
inhibitory connection of strength 2b is established between them because they have two nodes in
common. If two neurons from different SD pairs represent links that have one node in common,
an inhibitory connection of strength b is established between them. Note that since the system
constraints, which are discussed in Section 5.3, discourage the selection of links in different paths
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between a common SD pair, the congestion-limiting connections need only be created between
links in paths between different SD pairs.

A ijkk

If m * i, I Aijk n AS = 2, andl Aijk+l n Am|4=lAiJkil n A__ = _ 1

Fig. 11 - Illustration of adjacent links and links that share the same physical link

The basic difference between the expression for Eb and that given earlier for Eb under the
path-neuron formulation is that, since interactions between neurons now correspond to the
interactions of individual links, the summation must be taken over all possible such interactions.
The corresponding contribution to the equation of motion term is found by taking the partial
derivative of EL with respect to Vijk:

-ar = Nd, NA4m) L(mn)

-X _ X 2 E I E AijkAmno lVmno .
aVijk m=1 n=1 o=1

m#i

Reference 15 demonstrated that

El = 4E4

This proportionality relationship permits a straightforward comparison between the solutions
obtainpd by the path-neuron and link-neuron NN models; e.g., performance measures of Eb' = 36
and E' = 144 represent solutions of identical quality.

5.3 Incorporation of Constraints into the Energy Function

We have established four constraints for the link-neuron NN model. The first three
correspond directly to the constraints used in the path-neuron model. The fourth has been added to
ensure the activation of complete paths. Again, all are equality constraints, and the corresponding
energies are zero when the constraints are satisfied. We next discuss each of these constraints and
its corresponding contribution to the equations of motion.

1. Activate (select) links from no more than one path per SD pair:

JV.d Nr(i) N,#i) L(ij) Loim)

iE1 = rlI m_ I _2i=I jI m=I k=b n=I
m-s

=: -4E 1

a Vi 1t

Npsi)= -I
m~ 1
,wj'

VijkVimn = 0

L(im)

L(Im)
E Vimn

n- L(im) 
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This constraint supplies an inhibitory connection between all pairs of neurons representing
links in different paths that correspond to the same SD pair. The normalization with respect to path
length has been introduced to remove the tendency of this type of constraint term to favor long
paths; this is explained in detail in Ref. 15.

We remark that the normalization associated with this constraint, as well as constraints 2
and 3, results in asymmetric connection weights. Although symmetric connection weights may be
needed to guarantee convergence (see Ref. 22), the lack of symmetry in our problem formulation
has not prevented convergence, as will be discussed later. However, it -is possible that the
asymmetry is a factor in our inability to find globally optimal solutions.

2. Activate a total of exactly Nd paths in the network:

Nad Tt(i Lyi)vk 0

E2tXXI Y2 F z t Z 4iNsd) 0 - d

N 4d Np(na) L(mn> YVmnotr-L~j) mi Lmn)aVijk M-(-I t 01 L m} i)

This constraint specifies that exactly Nsd paths shall be completely activated. In this term,
the normalization is required to maintain the equality constraint. Any path that is completely
activated will contribute the value I to the triple sum. The triple sum may also be viewed as the
sum of the mean path output voltages, where the mean path output voltage is defined to be the
mean voltage of all neurons that belong to that path. Again, any path that is completely activated
will have a mean path output voltage of 1. Note that, as in the case of path neurons, it is possible
for this constraint to be satisfied when a larger number of paths have their mean neuron output
voltages somewhat less than 1. In the present case of link neurons, we may also have situations in
which portions of paths are fully activated; e.g., for a given SD pair, half of the nodes in each of
two different paths may have output voltages of I and the remainder may have output voltages of
0. Thus a separate constraint (i.e., constraint 4, to be discussed shortly) is needed to ensure that
complete paths are formed.

3. Activate exactly one path per SD pair:

-3 C3~ -Y (ijk L Im)
2 2 Vi m 0 1

rI j--I ui=1 LQ
i)Vijk W -m=I n=1 4m 

This constraint is essentially a reformulation of constraint 2. As in the case of the path-
neuron formulation, it is helpful although it is redundant It specifies that exactly one path shall be
completely activated between each SID pair. (The above discussion of partially activated paths
applies here as well.) As with the path-neuron model, £3 can be broken up to create multiple
Lagrange multipliers. The squared expression in parentheses gives the energy that drives a
Lagrange multiplier for each S) par.
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4. Activate complete paths:*

( N4d NQ) L(ij) L~ij) L

E4 - 2d-j E qJkVijm =0. (12)
2 i=1I j= 1 k= 1 m~i LQj) -(L4ij-. 1)J

The corresponding equation of motion term is given by

.--DE4' _ ( N4 N,(m) L(mn) L(mn) \(i)____ L(ij) ___

= Nsda 2 2 2 V mnoVmnp Vi j
avijk m1 n=l o=l p=1 L(mn) L(mn) - 1) h-l L(iJ) (LQJ) - 1)

Although the squaring operation produces fourth-order terms in the constraint term and third-order
terms in the equations of motion, it does not introduce any new problems into our simulations.
Despite the form of the expression, fourth-order neuron interconnections are not needed since the
original energy term in effect becomes a coefficient (with the same value for all neurons at any step
of the iteration) in the new expression. When this constraint is satisfied, E4 ' = 0 and the effect of
the corresponding equation of motion term vanishes because the first factor goes to zero. When
the constraint is far from satisfied, the first factor of the equation of motion term enhances the
effect of the E4' term, resulting in faster movement toward an admissible solution.

This constraint is unique to the link-neuron model. It specifies that if any neurons in a path
are active, all neurons in that path shall be active. The constraint is enforced by creating excitatory
connections between all neurons that form a path. Again, normalization is required to express this
requirement in terms of an equality constraint. Since the sum takes the pairwise product of the

output voltages of all neurons on a path, there are (LgJ') L(iJ)'(L(if)-l)12 products added for

each path ij. Thus, normalization by L(ij)'(L(iJ)-l)/2 allows each active path to contribute unity to
the sum.

5.4 Connection Weights and the Equations of Motion

The total energy is obtained by taking a weighted sum of the congestion-energy and
constraint-energy terms, which were given in Sections 5.2 and 5.3, as specified by Eq. (8). The
connection weights and bias currents are then determined by transforming the resulting expression
into the form of Eq. (7), as was done for the path-neuron model in Section 3.5. Reference 15
provides complete expressions for the connection weights, bias currents, and equations of motion.

5.5 Simulation Procedure

The link-neuron model was simulated by using a computer program written in C++ and run
on Sun workstations. A listing of the paths in the network to be analyzed, similar to that shown in
Table B. 1 in Appendix B of Ref. 15, gives the information needed for the program to create the
NN model. The initial input voltage to each neuron ijk is set so that the output voltage is equal to
the inverse of the number of paths between SD pair i. A small random perturbation (independently
chosen for each neuron) is again added to the input to avoid the effects of a totally symmetric initial
state. The perturbation is uniformly distributed on [-0.1 s0, 0. Lu0 ]. An iteration of the equations
of motion is then performed until one of three termination criteria is met. The iteration is
terminated if (1) the NN reaches stable convergence, (2) the NN state (the set of selected paths)
remains unchanged for a specified number of iterations, or (3) a time-out is reached.

*The notation of E4' is used to maintain consistency with Ref. 15 in which the original, and less successful, formulation of
this constraint energy was denoted as E4.
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5.5.1 Termination Criteria

Unlike the path-neuron model, the link-neuron model does not allow an instantaneous
solution to be obtained by simply interpreting the neuron with the largest output voltage of all
neurons associated with a SD pair as the chosen neuron.* In the link-neuron model, sets of
neurons are used to represent individual paths. For a path to be activated, all of the neurons in the
set representing that path must be active. To apply the second termination criterion, we use the
following method to determine the instantaneous NN state (the set of prematrely chosen paths at
any instant in time). We declare the path if to be the only active path between SI} pair i if

k= I (@ n1 I Lfin)

That is, the path with the largest average neuron output voltage is declared the active path between
its associated SD pair. With this instantaneous interpretation of the NN state, the second
termination criterion can be restated as: Terminate the iteration if the instantaneous state remains
unchanged for a specified number (typically several hundred) of iterations. Reference 15 discusses
termination criteria in greater detail.

5.5.2 Network Description

AR of the simulation results presented here are based on the 24-node network shown in
Figure 2, which we studied earlier using the path-neuron NN model. Table B.1 in Appendix B of
Ref. 15 lists the 10 SD pairs and 52 paths in the network. An exhaustive search of the
approximately 4 million admissible solutions has shown that the lowest possible value of 4 is
133; this is, of course, exactly four times the value of E' = 33.25 evaluated under the path-neuron
formulation. To provide a measure of the quality of our NN solutions, we note that the best
solution found by applying the shortest-path heuristic to this network yielded 4= 147.

5.6 Miscellaneous Considerations

5.6.1 The NeedforAdditional BiasCurrents

It was originally hypothesized that including the excitatory connections provided by the 4
formulation would eliminate the need for any additional bias current s. In efforts to verify this
hypothesis, a set of three simulations from 100 different initial statest were run with three different
levels of additional bias I: I = O. I = 3.0, and 1 = 5.0. The other parameter values were as follows:

. XJ1 O) IX 2(0) 1 X3(0)1 4()I b a A0 I (At0II u [ 0 |

1.0 1.0 1.0 1.0 01 5 1.0 0.000.01 0.1 0.01

Performance results, discussed in detail in Ref. 15, demonstrate that considerable
improvement is obtained by using bias values of I = 3.0 or 5.0. The best solutions found in
simulations without additional bias had -= 151. With additional bias of 3.1 or 5.0, solutions
were found with E= 135S**

*The instantaneous state of the system is defned in Section 4.3.
tThe same set of 100 different initial random seeds was used for each of the three values of I.
**As a result of the topology of this network and the method of calculating congestion energy, all Elfvalues will be odd
integers.
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As a result of these simulations, the additional bias current term was used in all subsequent
simulations of the link-neuron model. Although much improvement has been obtained in the
quality of the solutions by using the additional bias, the results remain inferior to those obtained by
using the path-neuron model. With the plth-neuron model, we were able to find solutions
with Eb' = 33.75 (which corresponds to Eb = 135) virtually 100% of the time, A reasonable
explanation for the inability to find optimal solutions is that the link-neuron model contains a much
larger number of neurons and interconnections, and thus a much larger solution space must be
searched. Another possible factor may be the use of asymmetric connection weights that result
from the first three constraints, as was discussed in Section 5.3.

5.6.2 The Use of MLM for the "Complete-Path" Excitatory Connections

As was done in the path-neuron formulation, we again considered the use of multiple
Lagrange multipliers (MLM) to implement the fourth constraint, which encourages the activation of
complete paths. Separate Lagrange multipliers were defined for each SD pair, as is discussed in
Ref. 15. Although the use of MLM improved performance for the path-neuron model, as is
discussed in Section 4.8.2, performance results for the link-neuron model indicate that the use of
MLM is detrimental to NN performance in this application

5.7 Methods to Overcome a Detrimental Preference for Short Paths

A careful evaluation of the link-neuron model reveals that the energy expression
corresponding to the fourth constraint (E4) contains a subtle bias in favor of shorter paths, which
makes it difficult to find minimum-energy pats. Although the solutions produced by the shortest-
path heuristic are usually of reasonably good quality, as discussed in Section 4.5.1, a built-in
preference for short paths in the NN model is not desirable because it limits the search space.
Consequently, better solutions that use longer paths may be overlooked.

Two different methods were devised to eliminate, or at least reduce, the innate short-path
preference of the E4' formulation. The first method artificially forces all paths between a SD pair
to have the same length by adding "dummy neurons" to the shorter paths. The second method
adds a "compensatory bias" to longer paths to minimize the short-path preference. Both methods
are fully discussed in Ref. 15, and simulation results are presented in the following subsection.

Simulation Results Using the Dummy-Neuron Model

The use of the dummy-neuron formulation results in a marked improvement, as compared
to the original E4' formulation (Fig. 12). As usual, simulations were run from the 100 different
initial states used in Section 5.6. In 61 of these runs, E4 • 147 (the congestion energy of
the solution found by the shortest-path heuristic); a total of 49 runs had Eb C 147. Seventeen
solutions were found that had congestion energy of El = 135. The parameter values used in the
dummy-neuron simulations were

X1(0) 1X2(0) I X3 (0)l |O)lI b A (At)x || uo I £e

1.0 1 1o0 1.0 1.0 1.01 0. 1.0 1 .0 0.001 0o,005I 0. I o .1 1

Simulation Results with Compensatory Bias

Simulations using the compensatory bias described above in conjunction with the E4'
formulation were run from the same set of 100 different initial states used previously. The
parameter values were the same as used in the dummy-neuron simulations with the exception that I
= 5.0. The results are compared with those from the dummy-neuron simulations and simulations
with no effort to compensate for the short-path preference in Fig. 12. The use of compensatory
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bias yields improved performance1 but not by as much as the use of the dummy-neuron model.
Twelve of the compensatory-bias solutions had congestion energy values of Eb = 135, and 41
solutions had EL5 147, the congestion energy of the solution obtained by using the shortest-path
heuristic.

0.25

BE4

0.20 g3 E4 with Dummy Neurons
i. bCompensatoriBias

0.15

0.10 -----

0.05

0.00 11
133 135 137 139 141 143 145 147 149 151 153 155 157 159 161 163 165 167 169

tLink-Neuron Congestion Energy Lb

Fig. 12- Results of simulations using the dummy-neuron and the compensatry-bias models
compared with best previous results

5.8 Use of Simulated Annealing with the Link-Neuron Model

In limited experimentation with Gaussian simulated annealing using different cooling
schedules, solutions were found with congestion energy values ranging from 4= 155 to 217.
These poor results, combined with the highly mixed results of GSA when applied to the path-
neuron model, prompted us not to pursue this approach any further.

5.9 A Distributed implementation of the Link-Neuron Model

In Ref. 15 we describe a "distributed" NN model and present results of its simulation.
Typically, in a distributed network protocol there is no central controller with access to global
network information. Decisions are made at each node based solely on local information, i.e.,
information obtained solely from one- or two-hop neighbors. A NN model with neural
interconnections between only those neurons that represent adjacent links bases its decisions solely
on information from no further than two hops away, and therefore a distributed implementation of
its function is perhaps possible. However, the practicality of such a distributed implementation is
questionable. In simulations of the algorithm, the lack of a central controller with global
knowledge rules out the use of the early termination criterion, resulting in the need for many more
iterations of the equations of motion. Furthermore, the large number of iterations1 each of which
requires information to be passed between neighboring nodes, generates such a large quantity of
communication overhead that a purely distributed implementation of the NN algorithm in a
communication network is virtually precluded. Another disadvantage of a distributed model arises
because low-energy solutions cannot be guaranteed, a property that has required the simulation of a
large number of runs for each set of system parameters. In a distributed setting, it is not possible
to determine the quality of a solution based on only local state information.

Nonetheless, we have further addressed the question of distributed operation to decrease
the network complexity by reducing the number of neuron interconnections, while maintaining
reasonably good results. Reference 15 restates the constraints in a distributed form and presents
the results of simulations of the distributed model. It was found that although the "distributed"
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model does not produce low congestion solutions as consistently as theycentralized model, it is the
only model that has found a minimum congestion-energy solution (Eb = 133) for the problem
instance described in Section 5.5.2. In a Monte-Carlo simulation from 100 different states, the
distributed model found three optimal solutions.

5.10 Conclusions on the Link-Neuron Model

In this section, we have presented a link-neuron NN model for solving the congestion-
minimization problem, and we have shown that it is capable of determining reasonably good
solutions to this problem. This model is quite similar to the path-neuron model discussed in
Section 4, except that interactions between individual links are taken into account. This results in a
much larger number of neurons and interconnections than were needed in the path-neuron model.
A further complication is the need to add excitatory connections between neurons corresponding to
links on the same path, to ensure that complete paths are formed.

Again, we used the method of Lagrange multipliers to dynamically determine the
coefficients in the connection weights. After discovering a bias toward the selection of shortest
paths, which interfered somewhat with the selection of minimum-congestion sets of paths, two
methods were implemented in an attempt to improve performance. In the first, dummy neurons
were added so that the resulting lengths of all paths between a given SD pair would be equal. In
the second, additional compensatory bias was added to the neurons corresponding to links on non-
shortest paths, so that the bias in favor of the shortest-path solutions would be eliminated. Both of
these methods improved results; the dummy-neuron model performed somewhat better than the
compensatory-bias model.

Although the solutions obtained by the link-neuron NN model are typically not as good as
those produced by the path-neuron model, the link-neuron model does, in fact, represent a
significant advance in our study of NN models of network problems. In particular, the ability of
this model to generate complete paths by means of excitatory connections between neurons on the
same path can be viewed as a first step toward the more general, and more difficult, routing
problem in which the paths between each SD pair are not specified in advance; in this case, the NN
must piece together complete paths from individual links. It may also be viewed as a first step
toward solving the joint routing-scheduling problem, in which the time slot for the activation of
each individual link along every path is to be determined. These problems are the subject of future
research.

6.0 THE LINK-ACTIVATION SCHEDULING PROBLEM

The second class of problems we have studied concerns "link activation" or "scheduling" in
multihop packet radio networks. Briefly stated, this problem is the determination of conflict-free
transmission schedules that satisfy the specified communication requirements. In particular, given
the connectivity graph of a radio communication network, a set of Nsd SD pairs, and a multihop
path connecting each SD pair, determine a link-activation schedule of minimum length that will
deliver one packet* between each source and the corresponding destination such that no scheduling
conflicts occur, Before addressing the nature of scheduling conflicts, we define two versions of
the scheduling problem.

6.1 Two Scheduling Problems: Nonsequential and Sequential Activation

In the case of nonsequential-activation scheduling (NAS), the goal is to schedule each link
the specified number of times in each activation cycle, without regard to the order in which the
links of any path are activated. In the more-difficult case of sequential-activation scheduling
(SAS), the sequence of link activations along any multihop path must be preserved; i.e., for each

The model can easily be extended to incorporate nonunit traffic requirements.
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path, the link emanating from the source must be activated first, the next link second, and so on.
The same total traffic (in terms of the number of activations of each link per cycle) is supported
under both models; however, the NAS model may result in greater end-to-end packet delay
because several cycles may be needed to transport a packet from source to destination. Actually, in
most cases throughput (measured in terms of packets per slot) is greater when using NAS than
when using SAS because removal of the sequentiality constraint often permits satisfaction of
communication requirements in fewer slot

6.2 Scheduling Conflicts

We distinguish three types of scheduling conflicts-primary, secondary, and sequence.
These are described below.

Primary Conflicts

In this report we say that a primary conflict [5) occurs if:
1L A node has been scheduled to transmit and receive in the same slot; or

2. A node has been scheduled to receive from two or more nodes in the same slot; or
3. A node has been scheduled to transmit to two or more nodes in the same slot.

For ratherrestricted systems in which each node has a single transmitter and a single receiver, such
conflicts prevent the correct reception of a packet. In systems with multiple receivers available at
each platform, and/or a capability for successful simultaneous transmission and reception, the
notion of primary conflict can be redefined easily to incorporate such less-restrictive constraints.

Secondary Conflcts

We say that secondary conflicts occur when additional signals are transmitted in the same
neighborhood as the desired receiver, although not directed to that receiver. Whether or not they
are destructive depends on the nature of the signaling (i.e., coding and modulation) scheme that is
being used. For example, single-channel, narrowband systems normally cannot tolerate any
secondary conflicts, unless the interfering signals are of considerably lower power than the desired
signal. However, in spread-spectrum code-division multiple-access (COMA) systems, several
interfering signals transmitted on codes that are quasiorthogonal to that of the desired signal can
typically be tolerated; the probability of packet error in frequency-hopping systems depends on the
number of frequency bins over which the signal is hopped and on the properties of the error-
control coding that is used [8]. In spread-spectrum systems that use orthogonal CDMA codes this
is not a problem; any number of simultaneous transmissions can be tolerated. Since our main
objective is to demonstrate the capability of the NN approach rather than the precise modeling of
the interference, we assume here that such orthogonal spread-spectrum signaling is used, and thus
the problem of secondary conflicts is not addressed.

Sequence Conflicts

The sequential scheduling requirement is a further restriction of the problem. We declare
that a sequence conflict occurs if, within the schedule of activation1 two or more links are activated
out of order. As mentioned before, under the SAS model we require that along a SD path the links
are activated in the order in which they appear in the path, starting with the link that emanates from
the source node.

Thus, overall, we declare the occurrence of a scheduling conflict if there is a primary
conflict, or if there is a sequence conflict. However, sequence conflicts are not addressed in the
formulation of the NAS problem.
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6.3 Communication Requirements

The testing ground of our approach to this problem has been the 24-node network shown
in Fig. 2, which was used in some of the routing studies discussed in Sections 4 and 5. All of our
scheduling simulations are based on scheduling the delivery of one unit of traffic from each of a
specified set of source nodes to a specified set of destination nodes in this network. In each case a
single path between each of the SD pairs is prespecified. Table 2 gives one example of a set of
paths between 10 specified SD pairs. One packet is to be delivered from each source node to each
destination node in the duration of every activation cycle. The resulting communication
requirements are shown in Fig. 13, e.g., each link represented by a single arrow corresponds to a
communication requirement of one packet, each double arrow to two packets, and each triple arrow
to three packets.

Table 2. A Set of Paths Connecting 10 SD Pairs in the Network of Fig. 2
S1) pair [S, D] 1 Path (nodes traversed)

1 [4, 24] 4 5 13 20 24
2 [7, 17] 7 14 15 17
3 [9,161 9 12 13 19 14 15 16
4 -F[1, 19] 1 4 5 13 19
5 15, 11] 5 6 1
6 [21,61 21 22 20 13 5 6
7 [1, 10] 1 2 3 6 8 9 10
8 [3, 181 3 4 7 14 15 18
9 [2,12] 2 4 7 12
10 [14,8]_ 14 7 11 8

Examples of primary conflicts that may occur in the network shown in Fig. 13 include the
following:

* If node 1 is scheduled to transmit to node 2 in the same slot in which node 2 is scheduled
to transmit to node 3, node 2 is scheduled to both transmit and receive in the same slot,

* If nodes 2 and 3 are both scheduled to transmit to node 4 at the same time, node 4 is
scheduled to receive from two nodes in the same slot.

* Node 1 is scheduled to transmit to two nodes in the same slot if it is scheduled to transmit
to both nodes 2 and 4 at the same time.

An example of secondary conflict arises if there are simultaneous transmissions from node
2 to 3 and from node 1 to 4. Although the message transmitted by node 2 is intended for node 3, it
also collides with node l's transmission because node 4 is within range of node 2. Whether or not
this interference is destructive depends on the type of signaling that is used. In a narrowband
system, it is generally destructive. In a system with quasiorthogonal CDMA codes, it will most
likely not be. However, if nodes S and 7 (which are also neighbors of node 4) also transmit at the
same time, the combined effect of their interference may raise the packet error probability
significantly.
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Fig. 13 -Link communication requirements for the set of paths listed in Table 2

6.4 Complexity Issues

It is easily recognized that the link-activation scheduling problem is equivalent to the graph
edge-coloring problem, which is known to be NP-complete [34]; time slots in the former
correspond to colors in the latter. Thus our problem is NP-complete, a property that suggests that
the Hopfield NN approach is reasonable. We point out that versions of the scheduling problem
exist that are solvable by polynomial algorithms [1, 351. In such problems, fractions of packets
are permitted to be transmitted in shorter slots, unlike our problem in which we require complete
packets of fixed length to be transmitted in full-length slots. Such polynomial scheduling problems
are related to the determination of the fractional chromatic index of a graph (known to be a
polynomial problem), whereas the discrete packet scheduling problem corresponds to the
determination of the chromatic index of a graph (which is NP-complete).

7.0 BOUNDS AND HEURISTICS FOR MINIMUM-LENGTH SCHEDULING

We have noted that the problem of determining a minimum-length schedule that satisfies a
specified end-to-end communication demand, in almost all of its forms, is NP-complete [1, 2, 71.
Therefore, unless a schedule's length is equal to a known lower bound on the schedule length,
there is no way to determine whether the schedule is optimal (other than exhaustive search, which
is practical only for relatively small problems). Thus, a reasonably tight lower bound on the length
of the minimum-length schedule is needed to aid in determining whether a schedule meets the
desired objective of being (at least) nearly minimum in length. The lower bounds on the minimum
length of nonsequential-activation schedules that are established in Refs. I and 6 are summarized in
Section 7.1.1. The lower bound on the minimum length of sequential-activation schedules, which
is introduced in Section 7.1.2, is a bound that we have developed to address the restrictions
introduced by the sequential scheduling requirement.
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7.1 A Lower Bound on the Schedule Length

7.1.1 A Lower Bound on the Minimum Length of a Nonsequential-Activation Schedule

For the case of nonsequential-activation scheduling (NAS), we use the lower bound on
schedule length developed by Post et al. [6]. This is given by

B,,,. = max(Bd,BJ,

where
B,,,, is a lower bound on the schedule length without the sequence constraint,

Bd = max {deg(n)},
Vnodes n

BA = ma jf(no)+finp)+ftosp)},
Vnodes n,o,p

f (n,o) = the number of packets that must traverse
the physical link (n,o) that connects nodes n and o.

The degree of a node n (denoted deg(n)) is defined to be the sum of the number of packets that
flow into it plus the number of packets that flow out of it. The inclusion of the expression BA
tightens the lower bound B,,,. by detecting the presence of three-node cycles, which may cause the
minimum schedule length A* to be greater than Bd. For example, the three-node cycle shown in
Fig. 14 clearly has Bd = 2, BA = 3, and A* = 3.

Fig. 14- A three-node cycle

7.1.2 A Lower Bound on the Minimun Length of a Sequential-Activation Schedule

For the sequential-activation scheduling (SAS) problem we have developed a lower bound
on the schedule length, denoted B,., that addresses the additional restrictions introduced by the
SAS requirement. The NAS bound B,,a is a lower bound on the minimum sequential-activation
schedule length, which can be tightened by noting that the length of a conflict-free sequential-
activation schedule can be no shorter than the length of the longest path in the network. The
observation that the positions that moderate- and high-degree nodes hold on the paths can increase
the minimum schedule length is also used to tighten B,,,, The new bound is given by

Ns-d|B m .vj
BS'S= max B~, BA,max(L(i,, 1
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where
B = max {deg(n)+Fa n)+La(fn),

Vnedes n
F. (n) = The minimum number of slots required prior to the first legal

activation of node n,
La(n) = The minimum number of slots required to complete the

activation of all paths after the last activation of node n.

Since B4 and the maximum path length are clearly bounds for A*, it suffices to show that 8 is
also a lower bound. The proof that B; is indeed a bound for A* proceeds simply as follows.

For each node n, let 4, denote the set of (unit-) traffic carrying links that include node
n; let us also refer to the jth link of the path between SD pair i as the (f-link. Note that

F(n) = m min i)} -1,

Laf(n) = min (L(i)-j)

where L(Q) is the length, in hops, of the path between SD pair i.

Clearly, to activate links sequentially, for each node n a minimum of Fin) slots must
be used prior to activating any of the links in 4. Additionally, a minimum of deg(n) slots
are required to complete the activation of the links in 4 without generating a primary
conflict. Finally, an additional number of slots are needed to complete the path
corrsponding to the link in 4,S that was activated last, and this is at least La(n). By
maximizing over all nodes we get the expression for Bk above.

Thus, B1 gjj includes some of the effects of the additional SAS constraint. Besides
tightening the bound by capturing the length of the longest path, it also tightens the bound by
considering those nodes of moderate and high degree that cannot be legally activated in the early
and/or later slots because of their position in the paths. For example, node 13 in Fig. 13 has
deg(13) = 8. Because its earliest appearance in any path is as a receiver in the second link in the
paths between SD pairs I and 3 (see Table 2), Fa(13) = 1, i.e., its first legal activation can occur
no earlier than the second slot. Its latest appearance is as the transmitter in the last link of the path
between SD pair 4; therefore, 4413) = 0. For the network shown in the figure, the value of 0 s
= B = deg(13) + Fa(13) + La(13) =9 is, in fact, a tight bound on the sequential schedule length,
i.e., B -= A*.

7.2 Heuristics for Scheduling

To further assess the quality of NN solutions, we have also considered two forms of a
"biased-greedy" heuristic similar to that developed by Post et al. [361. The NAS heuristic provides
optimal or near-optimal nonsequential-activation schedules (schedules with length equal to or
slightly greater than the NAS bound B, respectively) for most instances of the NAS problem.
The SAS heuristic generally provides sequential schedules with lengths one or two slots greater
than the SAS bound Byas. Section 7.3 summarizes the performance of these heuristics. Reference
16 provides a more complete discussion of performance. Note that both heuristics are
deterministic; thus eah produces a unique set of link activations for a specific set of paths.
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7.2.1 The NAS Heuristic

For the nonsequential-activation scheduling problem, the heuristic first creates a list of all
the links in the network and assigns to each link a bias equal to the sum of the nodal degrees of the
two nodes on which the link is incident. In this setting, a link corresponds to one unit of traffic
that must traverse one hop. Thus, if four units of traffic must be passed between adjacent nodes i
and j, four parallel links connect the nodes. The list of links is then sorted in descending order
based on the bias. The algorithm attempts to schedule each link in the first slot by descending
through the list and activating and removing each link from the list that does not share a node with
a previously activated link. When the bottom of the list is reached, the slot number is incremented,
and the process is repeated; the algorithm descends through the remaining list, activating and
removing each link that does not share a node with a link that was previously activated in the
present slot. The process is repeated until every link has been assigned a slot and the list is empty.

7.2.2 The SAS Heuristic

The SAS heuristic, which we introduce in this report, is the first algorithm we know of for

sequential link activation in radio networks.* This algorithm is essentially the same as the NAS
heuristic, except that the list of links for each slot is restricted to those links that are eligible for
activation in that slot, and the basis on which the links are sorted is slightly different. In the first
slot, only the first links (the links emanating from a source) from each path are included in the link
list because they are the only links eligible for activation. The list of links for the second slot
includes only the first links that were not scheduled in the first slot and the second links in paths
whose first links were scheduled in the first slot. In general, the list of links that are eligible for
activation in the kth slot contains no more than Nsd links, where Nsd denotes the number of SD
pairs; each link in the list is less than or equal to the kth link in its path, and all of the links in the
path that precede a listed link have been activated in an earlier slot.

In the SAS heuristic, the bias assigned to each link is slightly altered from that used in the
NAS heuristic to reflect the emphasis on sequential scheduling. Link ij (the jth link in the path
between SD pair i) between nodes t and r is assigned a bias given by

biasii =maxideg(t),deg(r)}+ L()-J

where (p, which was arbitrarily set equal to 10, can be used to shift the priority from activating
nodes of high degree to activating those links furthest from the destination. The eligible links at
each slot are sorted based on their bias and are "greedily" activated as in the NAS heuristic.

7.3 Performance of Scheduling Heuristics

7.3.1 Performance of the NAS Heuristic

We again consider the 24-node network shown in Fig. 2, which was discussed earlier in
conjunction with the routing-to-minimize-congestion problem. As discussed in Section 4.6, a total
of 52 maximally node-disjoint paths between 10 SD pairs were found by using the path-selection
algorithm discussed in Section 4.2. There are 3,981,312 different sets of 10 single paths between
each of the 10 SD pairs that can be extracted from the 52 paths listed. Applying the NAS heuristic
to each of these path sets has demonstrated that route selection greatly impacts the minimum
obtainable schedule length. The minimum value of the bound for the nonsequential-activation
schedule length (B,4s = 7 slots) was obtained for 858 path sets; the NAS heuristic was able to find
a minimum-length schedule for 481 of these 858 path sets. As noted earlier, it is not known a
priori whether a schedule of length B,,a actually exists; however, our NAS NN model has, in fact,
found seven-slot schedules for all of the path sets with Bna = 7 (discussed in Section 10.5). The

Mukherji [20] presents an algorithm for a similar problem in wire-line networks.
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heuristic schedules have lengths which are generally near Bs 97.86% of the heuristically
determined schedules were easily verified to be optimal because they have lengths equal to B,,,.
The heuristic schedules that have lengths greater than B,,. exceed the bound by an average of 1.12
slots.

The set of 858 path sets that have Bas = 7 was divided into two disjoint subsets. The frst
subset consists of the 377 path sets that the NAS heuristic was unable to schedule in seven slots.
For future reference, this set is labeled "(7, >7)" (BHas = 7, heuristic schedule length > 7). The
second set consists of the 481 path sets that the NAS heuristic was able to schedule in seven slots,
and is labeled "(7, 7)." Our NN model was able to find schedules of length seven for all of the
path sets with B,. = 7, i.e., for all path sets in the union of (7, >7> and (7, 7>. Partial listings of
sets (7, >7) and (7, 7) are given in Tables AS and A6, respectively, in Appendix A of Re 16&

7.3.2 Performance of the SAS Heuristic

The SAS heuristic was similarly applied to each of the nearly 4 million different path sets.
It was observed that it does not produce schedules that can easily be verified to be optimal (i.e,
schedules whose length matches the bound B51.) as frequently as the NAS heuristic; 31.34% of
the schedules found by the SAS heuristic had lengths equal to B., whereas 97.86% of the NAS
heuristic schedule lengths matched their corresponding B.= value. The SAS heuristic schedules
whose length exceeded B,,, were an average of 1.96 hops longer than the bound. A total of 1862
sets of paths were found that had Bsas = 8, but the SAS heuristic was able to schedule only eight
of these path sets in eight slots. These eight path sets are listed in Table A4 in Appendix A of Ref.
16. However, the apparently poor performance of the heuristic results at least partially from the
looseness of the bound BsaS; that is, some (perhaps many) of the heuristically found schedules
with length greater than B, may actually be minimum in length. Simulations of the SAS NN
model, which are discussed in detail in Section 11, have typically yielded sequential-activation
schedules with lengths between B. and the value of the heuristic schedule length. This indicates
that the disparity between B5,, and the heuristic schedule lengths is the result of a combination of
the loose bound and the inability of the SAS heuristic to consistently find minimum-length
schedules.

8.0 A NEURAL NETWORK MODEL FOR LINK-ACTIVATION SCHEDULING

As in the case of the routing model discussed in Section 3, the first step in formulating a
Hopfield NN model is defining neurons that correspond to binary variables in the system that is
being modeled. In this section, we consider a Hopfield NN in which, for every link in the
predetermined paths connecting the N~d SD pairs, one neuron is defined for each slot.' For
example, Fig. 1 5(a) shows a very simple six-node network with one path between each of two SD
pairs, and Fig. 15(b) shows a possible configuration (depending on the implementation of the
constraints) of the corresponding four-slot NN model designed for the SAS problem. A triple
index is now used to specify the neurons, i.e., neuron (jk represents time slot k for thefth link in
the path connecting SD pair i. The lower horizontal plane defined by neurons 211, 231, and 234
contains all of the neurons that represent links in the path connecting SD pair 2. The parallel upper
horizontal plane contains the neurons that represent the two links in the path connecting SD pair I.
Each of the parallel vertical planes defined by neurons with the same last digit corresponds to a
time slot, e.g., the plane defined by neurons 211, 231, and 121 corresponds to tim slot 1. The
connections shown are mutually inhibitory; thus any two neurons that are directly connected to
each other cannot both be "on" (i.e., have a value of 1) in a valid solution. The solid lines are
present in both the NAS and SAS models, whereas the dotted lines are present in only the SAS
model.t

Alternate formulations are also possible. Some of the other possibilities are discussed in Section 8.3.
tAdditional connections are needed to help satisfy system constraints, Tis figure is meant to provide a whematic
representation of the principles involved in the development of a NN model; it is not meant to be complete.
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The Lyapunov energy function can be written in terms of connection weights and bias
currents as

Nd NM L(i) L(l) A A NM Li) A

Et0 b = - =2 X X X X I I TjkJ VikV Z- X XVuEjIj.
i=1 1=1 j=1 m=l k=1 n=1 1=1 j=l k=1

(13)

where Tqkl&m is the strength of the connection between neurons ijk and lmn (it is positive if the
connection is excitatory, and negative if it is inhibitory). Ifjk is the bias current applied to neuron
ijk, A is the number of slots, and L(i) is the length of the path between SD pair i in number of
hops, The total number of neurons N is given by

Nsd

N = AIL(i).
i-1

S D2
Pe

S2(a 21 -

123 ---- Link between SD pair 1
- - v- Link between SD pair 2

'1

(a)

Neuron representing the first
slot of the second link in the
path between SD pair 1

(b)

Fig. 15 - An example network: (a) shows a six-node communication network;
(1) shows the corresponding four-slot NN model

It is customary and advantageous in certain cases to alter somewhat the approach to the
minimization problem. Instead of trying to minimize the schedule length directly, for example, we
may ask a series of binary questions like: "Is there a schedule of length A that satisfies all
constraints (of conflict-free transmissions, here)?" for A = A,, A + 1, *--, where A! is set equal
to the appropriate lower bound on the schedule length, i.e., Bsas for sequential, or Bnas for
nonsequential-activation scheduling.
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Typically, a number of runs are performed from different initial states of the NN. if a
schedule of A length cannot be found, A is incremented by one and the process is repeated. In this
formulation of the link-activation prolem, for each value of A there is no objective function E
to be minimized.' Since there is no objective function to be minimized directly in the modified?,
constraint-based NN model, the energy function given by Eq. (13) can now be rewritten as

4 NM L() A

EutcajXY cEcIX X XY"t. (14)
c=t i=1 j=1 k1

where the Er's are the constraint-energy terms, discussed in Section S.1, and the XB,'s are the
corresponding Lagrange multipliers. The goal is simply to determine the existence of a schedule of
given length that does not violate a number of constraints. These constraints ar established to
prevent transmissions that would result in collisions, and, in the case of sequential-activation
scheduling (SAS), to prevent scheduling the transmission of a packet before it is received.
Whether or not the minimum length is achieved depends on how successful the NN is in satisfying
these constraints for the different values of A.

As in our studies of the routing model, we have found that, by allowing the Xks to vary
dynamically along with the system state as in the classical method of Lagrange multipliers, we
obtain significantly better NN performance. Therefore, this method is used in all of our NN
models for the scheduling problem.

8.1 Formulation of the Constraint-Energy Terms

We have studied several versions of the constraints for this problem. In this section we
present a 'basic" version of the set of constraint formulations; in Section 8.3 we examine the
variations of the basic version that have yielded improved performance.

Each of the constraints generates a term in Eq. (14) that must be equal to zero when the
constraint is satisfied. This is simply the usual Lagrange multiplier method for constrained
optimization.

Constraint I - Activate no links that cause primary conflicts:

N A8sd N, 4s L(iJ L(t) A

El -2 Y E E IA. n & AlmE J (1
2=1 1=1 j=1 m=- k=1

where Ai1 denotes the jth link in the path between SD pair 4 and

= J1, if 4 • lm, and links A4 and Ab share one or two nodes

IflAmIm |0, if links and Abn are disjoint or i = Im

The implementation of this constraint provides strictly inhibitory contributions to the
connection weights: Two conflicting neurons (i.e., two neurons that represent adjacent links in a
common slot) mutually exert on each other a negative force that is proportional to the product of
their output voltages.

Constraint 2 - Activate each link once and only once:

M tdL[ A A

E=2 YY, , Vik - I G (16)
i=1 M =1 V~
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This term is zero when exactly one slot is chosen for each link. In other words, it is zero
when, for every link in the network, exactly one neuron out of the set of neurons that represent
different slots for that link has an output voltage of 1, and the neurons representing all of the other
slots have output voltages of 0. This constraint can be either excitatory or inhibitory. Loosely
speaking, the effect of this term is excitatory if the majority of links have less than one active
neuron and inhibitory if the majority of links have more than one active neuron.

Constraint 3 - Activate a total of N., neurons:

E3 2( Y NJ 2Viik =0, (17)
2i=1 j1 k=l

where N, = L{d L(i) (assuming one unit of traffic is to be delivered between each SD pair) is the

total number of transmissions required to satisfy the communication requirements. This term
vanishes when exactly one slot has been selected for each link. Like constraint 2, it can be either
excitatory or inhibitory. Although this constraint appears to be redundant (because satisfaction of
the second constraint guarantees that it is satisfied as well), its inclusion in the energy equation is
helpful in achieving convergence to valid solutions. As noted in our discussion of the routing
model in Section 3, the use of such seemingly redundant constraints is common in Hopfield
network models. Satisfaction of constraint 2 alone (along with a mechanism to guarantee that all
neurons take on binary values) actually suffices to constrain the number of activations, However,
constraint 3 is useful because it imposes a greater penalty when an incorrect number of neurons in
the entire NN are set to 1. This is because it is a quadratic form centered about N., whereas
constraint 2 contains N., quadratic forms each centered about 1.

Constraint 4 - Sequentially activate the links in each path (i.e., link ij must be activated
before link im, for m >1 ):

Nd L(i)-t LOi) A m-j+k-1

E4=XY, I I I ViCkV =0 (18)
i=l j=l m=j+l k=1 n=l

This term provides a positive contribution to the energy function when two neurons that
represent an out-of-sequence activation of the links in a path have nonzero output voltages. It turns
out that it represents purely inhibitory contributions to the connection weights. In applications
where it is not necessary to maintain the sequential order of link activation, i.e., in the NAS
problem, the E4 term is not included in the energy equation.

8.2 Determination of Connection Weights, Bias Currents, and Equations of
Motion

The connection weights and bias currents are determined in a manner similar to that used
for the routing problem, which was discussed in Section 3.5. Substituting the constraint-energy
expressions into Eq. (14) results in an expression in which the quadratic terms correspond to the
connection weights and the linear terms correspond to the bias currents. The equations of motion
are then easily determined. Reference 16 provides complete expressions.

Use of the Method ofLagrange Multipliers to Determine Connection Weights

As was done in the routing model, we again permit the Lagrange multipliers (LM) Xc to
vary dynamically as follows:

XC(n + 1) = X,(n) + (At)y E£(n),
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where the time constant (&h) may be a different value for each of the X4 s. Note that, since Ž >
0, the quantities X, are monotonically nondecreasing. Typically, the Lagrange multipliers are
assigned initial values of 1.

Multiple Lagrange Multipliers

Examination of the second constraint energy term E2, which requires that each link be
activated once and only once, suggests that it may again be advantageous to use the method of
multiple Lagrange multipliers, which was introduced in Section 4.7.1. We define a separate
Lagrange multiplier for the constraint applied to each link. Doing so-would increase the LMs
associated with those links that were unsuccessful in activating exactly one neuron.

The second constraint formulation may be rewritten as

N4d L(E)

Ez X e2 ij0
i_1 j=l

where each of the terms of the form

A 6 2
eL 2 Yk 

k=1

is an equality constraint specifically for the jth link between SD pair i. Now Lagrange multipliers
are defined to correspond to each of the eay's, and they evolve as

X2 ii (n + 1) = X21y(n) + (Atx 2ij e (i).

8.3 Variations of the Basic Scheduling NN Model

8.3.1 The Condensed NAS Model

Altough the NAS model attempts to schedule the communication requirements for a set of
multihop paths, this formulation of the problem permits a decomposition that essentially transforms
it to a one-hop scheduling problem similar to that considered in Ref. 2. As such, it is no longer
necessary to associate each link activation with a particular path or SD pair. Therefore, the size of
the NN model can be reduced by creating A neurons for each physical link, rather than creating A
neurons for each unit of traffic on each physical link as was done in the basic model. Then
constraint 2 is altered to require that each physical link p be activated Nx) tims, where NP/(p) is
the number of units of traffic that must traverse physical link p. We refer to this as the condensed
NAS model. By denoting the modified formulation of the condensed NAS model with a
superscript c, the resulting constraint can be expressed as

E2 = j Y pk -PNAp)) =0,
2p=l k=1

where N., is the number of physical links in the network.* Differentiating 4 with respect to V
as suggested by Eq. (5), yields the corresponding equation of motion term:

This expression can easily be converted to the MLM fonat by applying an approach similar to that used in Section .2.
That is, for each physical link p, a Lagrange multiplier is defined to correspond to an equality constraint that requires link p
to be activated exactly N4(p) times.
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C ~~A
-DE2 = Nx (p) - Y, pnv
aVpk nx l

Note that now the neurons are double indexed (a triple index was needed in the basic model) so
that neuron pk represents the pth physical link at the kth time slot. Although the other constraints
remain virtually unchanged, the modified structure of the condensed NAS NN model requires that
each of the constraint-energy terms be rewritten to conform to the new doubly indexed neuron
notation. This gives the following modified total energy equation:

x p Npl A V NPI A
Etotal I PnA_ pkVqk+ X Vpk-Nx(p)

p= ql= k= 2 p=lk=1 /
q*p

2 jtSVpk -Na ) "EVk
p=1 k=1 p21 k=1

where we now have

A A J 1, if physical links Ap and Aq share one or two nodes

I Pn qi= loif physical links Ap and Aq are node disjoint

Because this is strictly a NAS model, the sequentiality constraint E4 has been omitted.

The communication requirements of Table 2 represent a typical example considered in this
report. Scheduling these requirements with the basic NAS model requires a NN consisting of (41
required transmissions x 8 slots =) 328 neurons. The use of the condensed NAS model results in
a reduction in the number of neurons to (30 physical links x 8 slots =) 240. Since the number of
computations required at each iteration is approximately proportional to the square of the number of
neurons, this reduction in the number of neurons markedly reduces the NN complexity.
Furthermore, extensive simulation results, which are discussed in Section 10, have shown that the
condensed NAS model consistently delivers better performance than the basic model.

8.3.2 The Reduced SAS Model

The condensing process just discussed for the NAS model cannot be applied to the SAS
model. Under the SAS operation, it is necessary to keep track of the SD pair for which each link is
activated, so that the sequential order of link activations over every SD pair can be maintained.
However, the number of neurons can be reduced by eliminating from consideration those neurons
whose activation would not be consistent with the sequential-activation constraint. For example,
the second link of a path cannot be activated in the first slot of the schedule, etc. We refer to the
resulting model as the reduced SAS model.

When the sequential-activation constraint is enforced, the set of slots in which link ij can be
legally activated is a subset of the set of A slots that form the schedule. If, for example, the path
between SD pairx has length L(x) = 5, and the sequential schedule length is A = 6, the first link of
the path, link xl, can be legally activated only in one of the first two slots; activation in a later slot
must result in either a primary conflict, a sequence conflict, or both, or the failure to schedule the
activation of every link. Similarly, the second link in path x, link x2, can be legally activated only
in one of slots 2 or 3, and link xj can be legally activated only in one of slotsj orj +1. In general,
link ij can be legally activated only in one of slots j through j + Xi, where Xi = A - L(i).
Therefore, the neurons that represent illegal slots (i.e., neurons ifk, k < j or k > j + Xi) can be
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eliminated without reducing the admissible* solution space. The elimination of these neurons,
besides reducing the complexity of the NN, also removes a significant number of potential local
minima that may trap the NN in an inadmissible solution.

Thus in the reduced SAS model, only Xi + I (rather than A) neurons are created for each
link in the path between SD pair i. The constraint formulations of the basic model are virtually
unchanged; only the indices of the summations over the number of slots must be changed to reflect
the absence of neurons that correspond to illegal slots. (Alternatively, the removed neurons may
be considered to have output voltage values of zero, in which case the indices of the basic model
equations need not be altered.)

Figure 16 shows the reduced SAS model for the network of Fig. 15(a). Comparing the
model in Fig. 16 with that shown in Fig. 15(b) illustrates that, even in this very simple problem, a
significant reduction in both the number of neurons, and the number of connections, is obtained by
using the reduced SAS model. The solid lines in Fig. 16 represent the neuron interconnections that
enforce the first two constraints. Those that are parallel to the y axis enforce the first constraint;
which prohibits primary conflicts. The interconnections that are parallel to the time axis enforce the
second constraint (activate each link exactly once). The dashed lines represent the interconnections
that enforce the sequentiality constraint. The interconnections between every pair of neurons that
enforce the third constraint (activate a total of N neurons) are not shown.

Neuron representing
the second slot of the
second link in the path
between SD pair 1.

,. rc-# -- -- ----- -
Fig. 16- The reduced SAS model for [he network shown in Fig. 15(a)

The minimum length of a sequential-activation schedule that satisfies the communication
requirements of Fig. 15(a) is four slots. Table 3 lists one such schedule. In the table, entries ar
shown only for the slots that are represented by a neuron in Fig. 16. The blank cells represent the
slots in which the link can never be activated in an admissible sequential-activation schedule.
Thus, the table also aids in understanding the structure, of the reduced SAS NN model. Since each
of the cells in the table corresponds to a neuron, the cells are addressed by a triple index in the
same manner as the neurons; i.e., cell 1,4k represents slot k of thejth link in the path between SD
pair 1. A cell entry of X denotes a link activation, o denotes an open slot (i.e., the link can be
activated without conflict), b denotes a blocked slot in which activation will result in a primary

A admissible solution or schedule is one that satisfies all of the constraints.
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conflict, and i denotes an ineligible slot (i.e., a slot in which activation of the link must cause a
sequence conflict). For example, the b entry in cell 1,2,4 indicates that activation of link 1,2 (the
second link in the path connecting SD pair 1) is blocked in the fourth slot by the scheduled
activation of link 2,3 in this slot. Therefore, activation of link 1,2 in the fourth slot would cause a
primary conflict. A close examination of the table reveals that link 1,1 can be activated in slot 3
without causing a primary conflict. However, because link 1,2 is blocked in slot 4, there is no
way that a unit of traffic received in slot 3 can be relayed by link 1,2 in this four-slot cycle; i.e., as
a result of the blockage of link 1,2 in slot 4, activation of link 1,1 in slot 3 must result in a
sequence conflict. Therefore, we declare link 1,1 ineligible for activation in slot 3, and enter an i in
cell 1,1,3.

Table 3. An optimal schedule for the network of Fig. 15(a)
(X = link activation, o = open for activation, b = link
blockage, i = ineligible for activation owing to the
blockage of an adjacen link)

I Indices Slot
Path I Link (SD, link) 1 2 FT 3

1 '(1->2) 1,1 X Ib Ii1
(2->6) 1-2 x I b Ib
(4->5) 2,1 X 10 

2 (5->6) 2,2 I Tb IX
. .{6-3)= 2I 3 1 1 1, 

8.3.3 The Adjustable-Length Model

Our approach with the basic, the condensed NAS, and the reduced SAS NN models, like
the approach in Ref. 2, has been to attempt to solve the problem of determining the minimum-
length admissible schedule that satisfies a given set of end-to-end communication requirements by
repeatedly posing the binary question "Can a schedule be found that satisfies the given end-to-end
demand in A slots?" for different values of A. Starting with A equal to a known lower bound on
the schedule length, the question is repeated as A is incremented until an admissible schedule is
found. Since the NN model only guarantees convergence to local minima of the energy function,
the failure of any NN simulation to find a A-slot admissible schedule does not preclude the
existence of such a schedule. Therefore multiple NN runs from different initial conditions must be
run for a value of A that is too small before it may be concluded with any degree of confidence that
a larger value is required. In the NAS problem a schedule can usually be found for the first value
of A because the NAS bound Boas is tight for many networks and communication requirements
(the bound is tight for all the topologies we have examined). In the SAS problem, however,
multiple runs for several values of A are usually required because the SAS bound B5,, is generally
not tight. These considerations, coupled with the frustration of multiple inadmissible solutions, led
to the development of the "adjustable-length" model.

The adjustable-length model attempts to solve the scheduling problem without resorting to
the binary-question approach. Ideally, every run of the adjustable-length NN model will deliver a
conflict-free schedule of short, but not necessarily optimum, length. This is achieved by
implementing the basic model (or the condensed NAS, or the reduced SAS variants) with an
obviously excessive number of slots (e.g., use A = 1.5 Bd,* a known upper bound on the
minimum schedule length for NAS [1]), and penalizing activations that occur in later slots by using
an additional energy equation term, which we denote E5. Thus, link activations are encouraged in
the early slots, and unused slots are discarded to yield a nearly minimum, if not minimum, length
admissible schedule. Reference 16 provides a complete description and discussion of performance
results.

The bound Bd is the maximum nodal degree in the network, as discussed in Section 7.1.1.
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8.3.4 Gaussian SimulatedAnnealing

Simulated annealing (SA) [37-39] is a probabilistic minimization algorithm that facilitates
the escape from local minima so that the chances of finding the global minimum are enhanced.
Under this technique, the energy function normally follows a gradient descent; however, random
perturbations are applied to permit occasional transitions to states with higher energy. If these
perturbations are large enough, it is possible to escape the local minimum, thereby permitting the
search by gradient descent to resume in a new location in the search space.

The Gaussian Machine of Ref. 32 used constant valued connection weights and combined a
form of mean field annealing (MFA) [29] with additive Gaussian noise (AGN) (an overview of
MFA is given in Appendix A); this approach is known as Gaussian simulated annealing (GSAJ.
However, we have found that the combined use of the methods of Lagrange multipliers and AGN
generally provides better results than those obtained by using MFA with AGN. Efforts to combine
the use of MFA with the method of Lagrange multipliers led to the conclusion that no synergistic
relationship exists between the two methods [151. Therefore, our form of GSA uses the method of
LM with AGN and an unchanging nonlinear neuron input/output voltage relationship. Our best
results for the routing problem have been obtained without the use of GSA, and so we did not
present those results in this report. However, the use of GSA has been essential to the
performance of our scheduling NN models.

The use of GSA has no direct effect on the NN energy formulation. Therefore, it can be
used in conjunction with any of the NN models or their variants. The use of GSA is reflected in
the equations of motion only by the additive noise term as follows:

=u +n,

where ul, is the input voltage in the absence of noise. This may also be written as

N.d L(1) A

uk(t + At) = uijk(t) -( X X kt) - V - +ik T+I
=1 m=i n=1 

where uMjk' is the input voltage in the presence of AGN, and the noise term has a zero-mean
Gaussian distribution with variance a2. The variance is decreased according to a "cooling"
schedule given by

where k = , To is a parameter that controls the initial value (temperature) of the variance, and
CT is the annealing time constant that controls the rate of cooling. After a specified number of
iterations, G8,ed t, is set to zero so that noise is no longer added to the system. The use of this
form of GSA has yielded improved performance in several of the scheduling NN models, as
discussed in Sections 10 and 11.

9.0 SIMULATION ISSUES - THE SCHEDULING PROBLEM

Extensive simulation results have demonstrated the capability of our NN formulation to
generate optimum or near-optimum schedules. Several variants of the NN model, which have

54



NRL REPORT 9366

Since all of the constraints are essentially satisfied, continued iteration only serves to drive the
output voltages of those neurons that are declared to be "on" (on the basis of the instantaneous state
interpretation) nearer to their assumed output voltage value of 1, and force the output voltages of
the remaining neurons toward 0. Thus a conflict-free schedule of length A has been found, and
continued iteration can yield no improvements or new information.

In runs that are terminated because of convergence, stalemate, or time-out, the NN has
failed to find a conflict-free schedule of length A. Termination resulting from convergence or
stalemate generally indicates that the system is trapped in a high-energy local minimum of the
energy function, and further iteration (without the aid of simulated annealing or some other
mechanism to escape local minima) generally is futile. Termination as a result of a time-out may
also indicate that the system is trapped in a high-energy local minimum of the energy function, or,
more likely, that the system is waffling between two (or more) different inadmissible states. For
example, an insufficient number of activations may provide sufficient excitation to activate neuron
ijk, resulting in a primary conflict. This constraint violation in turn provides sufficient inhibition to
deactivate neuron ijk, thereby returning the system to the original condition of an insufficient
number of activations.

9.3 Two Methods of Evaluating NN Performance

We have taken two different approaches in evaluating the performance of the NN models-
the Monte-Carlo approach and the multiple-instance approach. With the Monte-Carlo approach for
a particular problem instance, a given value of A, and set of parameter values, the NN is run from
a number of different initial states (typically 100). The fraction of runs that yield admissible
schedules in the series of simulations is then used as a measure of the NN model's performance.

With the multiple-instance approach, a problem instance is simulated from different initial
states until an admissible schedule is found. If an admissible schedule is not found within a
specified number of different initial states Ns max A is incremented and the process is repeated.
By applying this approach to a sequence of problem instances with similar characteristics, e.g., a
sequence of problem instances that all have the same lower bound on schedule length, the
performance of the NN model can be characterized by the average schedule length and the average
number of runs required to find a conflict-free schedule.

As discussed in Section 7.3.1, the 858 path sets that have Bs = 7 were divided into two
communication specification sets, set (7, >7) and set (7, 7). Set (7, >7) consists of the 377 path
sets that the NAS heuristic was unable to schedule in seven slots, and set (7, 7) consists of the 481
path sets that the NAS heuristic was able to schedule in seven slots. In our simulation studies
using the multiple-instance approach, we have compared these two sets in terms of the ability of
the NN to generate minimum-length schedules.

9.4 A Modification That Has Improved Simulation Results

We observed in our studies of the routing NN model (see Section 3.5) that an insufficient
number of neurons were typically activated, a problem that was mitigated by setting the parameter
a to a value greater than one, which corresponds to increasing the bias currents. Hopfield and
Tank [221 observed the same behavior in their studies of the TSP, as is discussed in Appendix A.
The typical value of a that was used in the routing problem was a = 1.5, which provided the
additional excitation required to activate the correct number of neurons. This is also the value of oa
that was used by Hopfield and Tank in their solution of the TSP.

In our studies of the scheduling NN model, insufficient neuron activation has not been a
problem. Nonetheless, we have found that adjusting the neutral positions of the amplifiers with
additional bias currents has helped in satisfying the system constraints. We have incorporated the
additional bias current into constraint 3 (see Section 8.1, Eq. (17)), which can now be expressed
as

57



WIESELTHER, BARNHART, AND EPHREMfDES
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In the scheduling NN model, where the underactivation problem is minimal, we have found that
setting the parameter f, which corresponds to the parameter a that was used in the routing NN, to
approximately 0.61 genrerally provides the best results. The resultant expression for bias currents
is

-=X2 +kX3jN, +I.

Methods to update the value of P dynamically in conjunction with either the NAS or the SAS
model are discussed in Section 10.4.1.

10.0 NAS SIMULATION RESULTS

In this section we present the results of simulation of the somewhat-easier NAS problem in
which the sequential-activation requirement is not present In this case, the goal is to schedule each
link the correct number of times in each activation cycle, without regard to the order in which the
links of any path are activated. This approach supports the same total traffic (in terms of the
number of activations of each link per cycle) as the sequential-activation model, but it may result in
greater end-to-end packet delay because several cycles may be needed to transport a packet from
source to destination. Actually, in most cases, throughput (measured in terms of packets per slot)
is greater using nonsequential-activation scheduling because removal of the sequentiality constraint
often permits communication requirements to be satisfied in fewer slots.

In Sections 10.1 - 10.3, the performance of the condensed NAS NN model is evaluated on
the basis of Monte-Carlo simulations of two problem instances. The model that was found to give
the best performance is the condensed NAS model with P = 0.61. The sensitivity of this model to
parameter variations is also evaluated. In Section 10.4, heuristic improvements for the NN model
are developed, and their effects are evaluated by multiple-instance simulations in Section 10.5.
The results of simulations of the basic and the a4ustable-length NAS NN models are presented in
Section 10.6. Although, in general, the performance of these models is inferior to that of the
condensed model with 13=0.61, each of the models has certain attributes that make its evaluation
worthwhile.

10.1 The Condensed NAS Model Using the Monte-Carlo Approach

We have studied in detail the scheduling of the links corresponding to the communication
requirements shown in Table 2 and Fig. 13. As can be seen in Fig. 13, the maximum nodal degree
in the network is 8 at node 13. Therefore, a lower bound on the nonsequential-activation schedule
length for this problem is eight slots. We know that this is the minimum schedule length for this
example because the NAS NN model has, in fact, found a number of admissible eight-slot
schedules for it.

We first considered the condensed NAS model with I = 1 and MLM. Starting from 100
different initial states, an optimal schedule (conflict-free eight-slot schedule) was found in 84 runs.
When GSA was used in conjunction with this model, simulations from the same 100 different
states found 89 optimal schedules. However, the best results were obtained by using the
condensed NAS model with I = 0.61 and MLM. Optimal solutions were found using this value of
f, both with and without GSA, in all of the simulations from 100 initial states. Out of the 200
optimal schedules found in these two simulations, no two were the same. This verifies that the
NN is, in fact, searching different portions of the solution space and successfully converging to
local minima of the energy function that correspond to optimal schedules. Despite the fact that both
simulations used the same initial states, the application of GSA caused a completely different set of
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optimal schedules to be found. Thus in this case, AGN alters the search trajectory without
compromising (nor enhancing) the final solution quality.

The parameter values used in the simulations of the condensed NAS models are shown in
Table 4. In the table, Xc(O) denotes the initial value of all of the Lagrange multipliers X,'s (this
includes the initial value of each of the MLM Xh,'s), and the parameter C is the limiting value of the
neuron input voltages, i.e., -C < upl < C.* The GSA parameters apply only to the runs that used
simulated annealing.

Table 4. Condensed NAS NN Parameters

XcO) (ki (At)x2 j (N)x 3 | ,' I | tB max Nc C j A I To | Tr jGend |

| 1 |0.02 | 0.1 | 0.1 |10-4 10 11.0, 0.61 2xl0 4 1 104 0.75 1 8 I yes 10.01 1 50 104o

10.2 Parameter Sensitivity

An important issue in measuring the performance of a NN model is its parameter
sensitivity. If good solutions are obtained using a wide range of parameter values, the time
required to determine appropriate parameter values by multiple trial-and-error simulations is greatly
reduced. The sensitivity of the condensed NAS model to variations in the values of the bias
parameters I and j3, and the third constraint LM time constant (At)x3 has been evaluated through
simulations. It was found that the model is relatively insensitive to variations in any of these
parameters. The most critical parameter is 13, which, if set too small, prevents the discovery of
admissible schedules by causing an oscillatory NN state. It was found that, for the problem
instance given by Table 2, the use of any value of P in the range [0.488, 0.854] yields 100%
optimal solutions, and the use of a value of ,D in [0.366, 1.122] yields greater than 70% optimal
solutions.

10.3 A More Difficult NAS Problem Instance

Monte-Carlo simulations of a more difficult problem instance were run by using the
condensed NAS model with 1 = 0.61. The communication requirements of this problem instance
(referred to as the "augmented problem" in this subsection), which are listed in Table A2 of
Appendix A in Ref. 16, were generated simply by increasing the load on several of the physical
links of Fig. 13. Here we refer to the problem instance defined by the communication
requirements of Fig, 13 as the "original problem." In this example, the transformation from the
original to the augmented problem results in an increase in the value of Nx (the total number of link
activations) from 41 to 63, while the number of physical links in the network remains constant at
30. The minimum schedule length for this problem is eight slots. The NAS heuristic scheduled
the problem in nine slots.

A Monte-Carlo simulation of the augmented problem was run from 100 different initial
states by using the condensed NAS model with MLM, GSA, and the parameter values shown in
Table 4 (1 = 0.61). In the simulations, 21 optimum schedules were found. In a typical optimal
schedule found by the NN model, only one more admissible link activation is possible; 99.6% of
the slots are either activated or blocked. The ability of our NN model to produce a significant
number of optimal solutions to such a highly constrained problem illustrates the power of our
method.

Our studies have shown that it is helpful to place limits on die neuron input voltages (which otherwise could range from
- to a); such limits help to prevent the neurons from being irrevocably locked into an "on" or "off' state.
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10.4 Some Improvements to the NN Model

10.4.1 Time-Varying P

The results of the Monte-Carlo simulations, which were presented above, have shown that
improved NN performance is obtained by using the condensed model with A less than one.
However as discussed previously, the use of a constant, less-than-one value of 1, presents two
problems: First, continued iteration after the discovery of an admissible schedule must cause the
NN state to change to an inadmissible schedule. Second, continued iteration as a result of the
failure to discover an admissible schedule eventually leads to an oscillatory NN state. Therefore, a
function that initially causes , to be approximately equal to 0.61 and to approach 1.0 as the NN
converges, appears to be appropriate. Functions of this type are discussed in Refs. 16 and 14.

10.42, A Traffic-Based Heuristic

Additionally, methods of extending conventional heuristic concepts to the NN model for
nonsequential-activation scheduling have been examined. In the biased-greedy heuristic [6, 361, a
bias, proportional to a node's degree, is applied to every node so that high-degree nodes are given
a higher scheduling priority than lower-degree nodes. Thus, lower-degree nodes are scheduled in
slots that are not blocked by the "prescheduled" high-degree nodes. This concept of scheduling
high-degree nodes first may be extended to the condensed NAS NN model by applying a "traffic-
based bias" to each physical lin. Details of this method are discussed in Refs. 16 and 14.

10.5 Evaluation of the NN Improvements via the Multiple-Instance Approach

The concepts developed in Section 10.4, i.e., the use of time-varying 1, or a traffic-based
bias to emphasize early scheduling of high-degree nodes (links>, were evaluated by means of five
multiple-instance simulations of the condensed NAS model. In each of these simulations, the goal
was to schedule to the problem instances in set (7, >7) in seven slots. These are the path sets that
have H,,.S = 7 but that the NAS heuristic was unable to schedule in seven slots (see Table A5 in
Appendix A of Ref. 16 for a partial listing). All five of the simulations were able to find optimum
schedules (i.e., admissible schedules of length seven) for each of the 377 problem instances in set
(7, >7), thus verifying that the lower bound on all of these path sets is tight, and more importantly,
that the NN model is capable of delivering better schedules than the NAS heuristic.

The results of these simulations (labeled A - E) are shown in Fig. 17. The figure shows
the average number of different initial NN states per problem instance required to find an optimal
schedule. The parameter values that make each of the simulations unique are shown in Fig. 17,
and the parameter values that were common to all of the simulations are listed in Table S.

Figure 17 shows that the use of the time-varying 1 in simulation B produces much better
performance than the use of a constant value of 1 in simulation A. Simulation A is essentially a
benchmark simulation that uses the methods and parameter values (i.e., the condensed model with
a constant a value of 0.61) that had been found effective in the Monte-Carlo simulations as
described in Section 10.1. Each of the simulations C, D, and E uses the traffic-based bias in
addition to the use of time-varying P. In these simulations, separate time constants (Ath.,,were
introduced to correspond to each of the Lagrange multipliers of the form X~p. These time constants
were assigned values proportional to the degrees of their associated links,* with the constant of
proportionality for each of the simulations shown in the figure. Figure 17 shows that the value of
the constant of proportionality greatly impacts the NN performance. With this constant set to 05
(simulation C>, an average of 2.13 runs are required to find a schedule. This is the least-efficient
performance of any of the multiple-instance simulations. However, with the constant of
proportionality set to 0.01 (simulation D, the most efficient performance of any of the simulations

t We define the degree of a link to be the sun of the nodal degrees of the two nodes on which the link is incident.
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This simulation required an average of 1.28 different initial states to find a
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Fig. 17- Average number of runs required to find an optimum schedule by using time-
varying P and/or a taffic-based bias in multiple-instance simulations

Table 5. Common Parameters for Runs A - E

X|(O) (At), j (A ,j I Ni Imax Nc I f I A MLM GSAI

I 0. 02I 0.1 o-4 11000 5000 0.75 [7L es off

The results of these simulations indicate that the use of a time-varying P can significantly
improve the NN performance. Additionally applying a traffic-based bias beneficially impacts the
NN performance only when the constant of proportionality is set to an appropriate value.

10.6 An Evaluation of the Basic and the Adjustable-Length NAS Models

The basic and the adjustable-length NAS NN models offer certain advantages over the
condensed NAS model and its variants, even though they do not provide comparable performance.
The main advantage of the basic model is its simple formulation, which may be relatively easily
implemented. The adjustable-length model, on the other hand, is a more complex formulation. It
adds one constraint, and requires approximately 1.5 times the number of neurons required in the
basic model. Nonetheless, the adjustable-length model potentially yields an admissible, if not
optimal, schedule from every run. It also provides an important step toward the development of a
joint routing-scheduling NN model, which is discussed in Section 12.

We have performed 12 Monte-Carlo simulations to evaluate the performance of the basic
and the adjustable-length NAS models. The simulations are labeled A through F (no relationship
to the simulations A through E that were presented in Section 10.5), and A' through F'.
Simulations A through F used the basic model, and simulations A' through F' used the adjustable-
length model, to schedule the communication requirements of Table 2. Recall that B,, = 8 for this
example; thus the minimum schedule length that can be found is eight slots. The parameter values
used in these simulations are shown in Table 6.
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Tale 6. NAS NN Parameters Used in Simulations of the Basic and e Adusbe-en Models

Run XC(0) (AOrhI A0x 2 (At1 3 (At)s5 At I I[Ni-max Nc To jT Gan4 l

A, A' 1 10.01 0.1 0.1 0.01 10-4 10 J2x1& t04 off off off

B-F, B'-F' 1 10.02 0.01 0.01 0.01 10-4 10 2xl4 14 0.75 [_1 50 11i

The results of Runs A through F are shown in Fig. 18, and the results of Runs At through
F' are shown in Fig. 19. The similarities and differences between each of the runs are also
summarized in the figures. The data shown in these two figures illustrate four important points:

Point 1: The use o fi = 0.61 yields significantly better results than the use of a unit-valued
fi in all of the NAS models.

Point 2: The use of the condensed model in conjunction with the use of 3=0.6I further
improves the performance of both the basic and the adjustable-length models.

Point3: Both GSA and MLM make important contributions to the NN perforumae

Point 4: All variants of the adjustable-length model deliver a reasonably high percentage of
admissible schedules.
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Fig. 18- Results of simulations of variations of the basic NAS NN model (A* = 8 slots)
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Fig. 19 Results of simulations of the adjustable-length NAS NN model (A* = 8 slots)

10.7 Conclusions on the NAS NN Model

In this section we have presented the results from simulations of three different NAS NN
models, the basic, the condensed, and the adjustable-length models. In both Monte-Carlo and
multiple-instance simulations, very satisfactory results were obtained by using the condensed NAS
model with 1 = 0.61 and MLM. In Monte-Carlo simulations of the problem instance given by
Table 2, 100% of the schedules found by this model were optimal. Simulations of the heavily
congested problem instance given by Table A2 of Ref. 16, which required near-maximal
scheduling, resulted in 21% optimal solutions, thus demonstrating the ability of our method to
determine optimal schedules for highly constrained problems. The model was also able to
optimally schedule all of the problem instances in sets (7, 7) and (7, >7), thereby demonstrating
the ability of the NN model to produce optimal schedules for many instances for which the NAS
heuristic was unable to do so. The efficiency of the condensed NAS model was increased by the
introduction of a traffic-based heuristic and the use of a time-varying P. Multiple-instance
simulations of set (7, >7) with this more-efficient model found optimal solutions in an average of
30% fewer runs than were required by the condensed NN model that used P = 0.61 and MLM.
These simulations of the condensed NAS NN model have shown that the model is capable of
finding minimum-length schedules in a large fraction of the runs. They also indicate that the model
is fairly robust to variations in the parameter values and in the communication requirements. Thus
we feel that the model is applicable to and will perform well in a broad class of scheduling
problems.

The basic and the adjustable-length NAS NN models offer certain advantages over the
condensed NAS model and its variants, even though they do not provide comparable performance.
The basic model provides the foundation on which all of the other NAS NN models are built. The
adjustable-length model (usually) provides an increased percentage of admissible schedules. In
addition, because this model does not require an accurate estimate of the minimum schedule length,
it provides an important step toward the development of a joint routing-scheduling NN model for
which such an estimate may be difficult. Simulations of both the basic and the adjustable-length
models have demonstrated their ability to deliver reasonably good performance.
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11.0 SAS SIMULATION RESULTS

All of the SAS simulations have used some form of the reduced SAS model. The use of
this model, besides reducing the dimensionality of the solution space by eliminating a number of
inadmissible solutions, also significantly reduces the number of neurons in the NN. Since the
number of computations required at each iteration of the NN model is approximately proportional
to the square of the number of neurons, reducing the number of neurons markedly reduces the time
required to complete a simulation.

Preliminary simulations of the reduced SAS model, without the use of any of the heuristic
aids that were developed for the NAS NN in Section 10.4, yielded disappointing results. Monte-
Carlo simulations that attempted to schedule the sequential activation of the communication
requirements of Table 2 in nine slots (the minimum length) produced only 7% optimal schedules.

Because of these disappointing results, which are markedly inferior to the results obtained
for the NAS model (without the heuristics that were subsequently developed for it), it has been
necessary to develop heuristics to improve NN performance. As was done in modifying the NAS
NN model, the concepts used in developing a heuristic SAS algorithm were applied to the SAS
NN model. These modifications are described in the next two subsections.

11.1 Skewed Initialization and Skewed Randomization

Much improved SAS performance has been obtained by, in essence, setting the initial
neuron output voltages so that the initial instantaneous state was free of sequence conflicts. This is
done by setting the initial output voltage value of neuron ik to

xi= t+Q X ) 2 2X(Xj+l)

where Xi + I = A - L(i) + I is the number of neurons that represent each link in the path
connecting SD pair , and mi is the slope of the initial output voltage V-t(O) as a function of the
time slot k that neuron iik represents. This function is plotted in Fig. 0. We call this type of
neuron initialization a "skewed initialization." We have used mi < 0 however, positive values of
mi can also be used, as discussed below. Setting mi = 0 results in the original form of
initialization, as discussed in Section 9.0. As in Section 9.0, a random perturbation is added to
each neuron following skewed initialization of the NN so that different random seeds cause
different portions of the solution space to be explored.

For m < 0, the ]th link in the path is activated in the jth slot of the cycle, which is the first
slot in which it could possibly be activated without violating the sequential-activation requirement.
Alternatively, for a positive slope (mi > 0), each link is activated in the last possible slot. Either
choice, if used consistently for all the links on the same path, will provide an initial state (based on
the instantaneous state description) that is free of sequence conflicts. However, this initial state is
not necessarily free from primary conflicts. Typically after this type of initialization, the NN must
remove a large number of primary conflicts. As the number of primary conflicts are reduced,
temporary sequence conflicts are often generated. However, simulation results have shown that
the discovery of a conflict-free schedule is much more likely when the initial instantaneous state is
free of sequence conflicts.
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Fig. 20- Initial neuron output voltage as a result of skewed initialization

We have developed two different approaches for assigning a value to mi, which we have
named the "path-length dependent" approach and the "hybrid" approach. A different approach
would be to randomly distribute the tentative activations over the entire set of legal slots for each
link, rather than clustering them in the early and/or late slots. We have called this the "skewed-
randomization" approach. All of these schemes are described in detail in Ref. 16.

11.2 Evaluation of Skewed Initialization and/or Randomization via Monte-Carlo
Simulation

The effects of skewed initialization and/or skewed randomization on the perfonnance of the
reduced SAS NN model were evaluated by Monte-Carlo simulations. Each of the runs attempted
to find nine-slot sequential-activation schedules (optimum schedules) that satisfy the requirements
of Table 2 and Fig. 13 from 100 different initial states.

The use of hybrid skewed initialization, with appropriate parameter values, produced 64
optimal schedules in 100 attempts. Thus, the introduction of hybrid skewed initialization yields an
order of magnitude increase in the percentage of optimum solutions. (Recall that only 7% of the
schedules found prior to the introduction of this method were optimal.) However, multiple-
instance simulations, which are discussed further in Section 11.3, have indicated that the hybrid
form of initialization does not provide the consistently good performance that is obtained when the
path-length-dependent form of initialization is used to schedule a number of different problem
instances.

In another series of runs, the path-length-dependent approach to initialization was used in
conjunction with skewed randomization and the time-varying j, which was discussed in Section
10.4.1. Optimal solutions were found in 21 of 100 runs. Although these results do not match the
64 optimal solutions found by the use of hybrid skewed initialization, it is noteworthy that the
number of optimal schedules generated is three times the number found without the aid of any of
the heuristic modifications. This simulation demonstrates that path-length-dependent initialization
can be used to obtain reasonably good results for this problem instance.

65



10.4.2 A Traffic-Based Heuristic ........................ .................... 60
10.5 Evaluation of the NN Improvements via the Multiple-Instance

Approach ................................ .. 60
10.6 An Evaluation of the Basic and the Adjustable-Length NAS Models ....... 61
10.7 Conclusions on the NAS NN Model........................................... 63

11.0 SAS SIMULATION RESULTS ....................................................... ,.64
11.1 Skewed Initialization and Skewed Randomization . . 64
11.2 Evaluation of Skewed Initialization and/or Randomization via Monte-

Carlo Simulation ....................... 65
11.3 Evaluation of Skewed Initialization and/or Randomization via

Multiple-Instance Simulation .. .................... 66
11.3.1 SAS Multiple-Instance Simulation Issues ......... ................. 66
11.3.2 A Simulation Using Hybrid Initialization ........................... 66
11.3.3 Evaluation of the Path-Length-Dependent Form of

Initialization ....................................................... 67
11.3.4 SAS of Highly Constrained Problem Instances ................... 67

11.4 Conclusions on the SAS NN Model ............................................ 68

12.0 THE JOINT ROUTING-SCHEDULING PROBLEM .................... ............ 68
12.1 Problem Formulation ............................................................. 70
12.2 A Joint Routing-Scheduling NN Model ................................... 70

13.0 CONCLUSIONS ............................................ 71

REFERENCES ............................................... 73

APPENDIX A - Hopfield Neural Networks and Their Application to Optimization
Problems.....................................................................................77

v



WIESELTHIER, BARNHART, AND EPHREMDES

11.3 Evaluation of Skewed Initialization and/or Randomization via Multiple-
Instance Simulation

Multiple-instance simulations of the reduced SAS NN model were performed to evaluate
the use of skewed initialization and/or randomization. These simulations scheduled the 50 problem
instances in set (7, >7) that are listed in Table AS in Appendix A of Ref. 16. Recall that each of the
problem instances in set (7, >7) has B,., = 7 as a lower bound on its nonsequential-activation
schedule length and a NAS heuristic schedule length greater than seven slots. Although these
problem instances were selected on the basis of a nonsequential-activation scheduling analysis of
the network of Fig. 2 and of the paths listed in Table AI in Appendix A of Ref. 16, they represent
a set of problem instances that offers a degree of diversity while maintaining some common
characteristics. Of the 377 path sets that are elements of the set (7, >7), 233 have lower bounds on
the sequential schedule length of B,,, = 8 slots, 114 have B,, = 9 slots, and the remaining path
sets have B,, = iO slots. The SAS heuristic found schedules for these specifications with lengths
ranging from 9 to 14 slots. The majority of the schedules generated by the heuristic were 10 or 11 
slots long; 25 were 9-slot schedules, and five were 14-slot schedules. None of the heuristic
schedules were as short as their corresponding bound.

Before presenting the results of these simulations in Sections 1 1.3.2 and 11.3.3, concerns
that are unique to SAS multiple-instance simulation are discussed in Section 11.3.1.

11.3.1 SAS Multiple-Instance Simulation Issues

In multiple-instance simulations, the parameter N, is critical to both the quality of the
solution and to computational efficiency. Since A* (the shortest possible schedule length for a
particula problem instance) is not known a priori, an attempt is first made to generate a schedule of
length A0 = Bs3 , If an admissible schedule has not been found after NS attempts, the value of
A is incremented by one, and up to Ns.m attempts are made again. This process is repeated until
an admissible solution is found. Clearly, none of the runs for which A < A can possibly produce
an admissible schedule. Thus, use of an excessively large value of NS maX results in a large
number of futile runs. On the other hand, use of too small a value of NS, can result in the
failure to find a schedcle of optimal length. For example, increasing the value of N, from 5 to
20 in a pair of otherwise identical multiple-instance SAS simulations permitted the generation of
shorter schedules for a significant number of problem instances; the percentage of schedules that
were no longer than those generated by the SAS heuristic was increased from 57.4% to 90%.
Thus, although the NN is able to find an admissible schedule fairly rapidly if N 3 = 5 (because
the schedule length is increased after only five unsuccessful attempts), it is also liely to overlook
admissible schedules with shorter length. Increasing the value of N,,,,, to 20 significantly
increases the probability of discovering a "short" schedule.

We have not been able to determine the length of an optimum sequential-activation schedule
for many of the problem instances in the set (7, >7). When a minimum schedule length has been
ascertained for a problem instance, confirmation has been achieved almost exclusively by the
discovery of a NN schedule with length that matches the tightened bound (i.e., for a few problem
instances, we have been able to increment B_,, by examining the network, e.g., see Appendix B of
Ref. 16). To assess the quality of all of the admissible schedules generated in a simulation,
including those with unknown minimum length, we compare their lengths to the lengths of the
schedules found by the SAS heuristic.

1132 A Simulation Using HybridInitialization

A multiple-instance simulation was performed by using the hybrid form of initialization
(With NS-ma = 20) in the absence of simulated annealing. Although admissible schedules were
found consistently in this run, only 30% of the schedules were shorter than those found by the
SAS heuristic, and 36% were longer than the schedules generated by the heuristic. Seven of the
50 schedules produced in this simulation are known to be optimal (i.e., minimum in length), and
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35 are known to be nonoptimal.* Thus, the good performance that was obtained by using hybrid
initialization in the Monte-Carlo run discussed in Section 11.2 and the relatively poor performance
obtained in this multiple-instance simulation, indicate that the performance of hybrid initialization is
inconsistent. In the next subsection, simulations show that, in general, significantly better results
are obtained by using the path-length-dependent form of initialization.

11.3.3 Evaluation of the Path-Length-Dependent Form of Initialization

We have evaluated the use of the path-length-dependent form of initialization in a number
of variants of the reduced SAS model by multiple-instance simulations that scheduled the problem
instances listed in Table A5 of Ref. 16. The best results were found by using the same NN model
that was used in Section 11.2. In addition to using path-length-dependent initialization, this model
used GSA, skewed randomization, and time-varying PB. In this simulation, the value of Nsma
was set equal to 20. Only two of the 50 schedules found by this model were longer than the
schedules found by the SAS heuristic. Eleven of the schedules have been shown to be optimal;
thirteen of the schedules are known to be nonoptimal. Six of the certified nonoptimal schedules
have length A* + 1 (for these problem instances, we have been able to ascertain that A* = 9).
Another five were verified to be nonoptimal when shorter admissible schedules were generated by
a second simulation of the same NN model with Ns ma, = 40 (instead of 20). We know that the
remaining two nonoptimal schedules have lengths greater than A* because the schedules generated
by the SAS heuristic are shorter than those found by the NN. Clearly, a schedule whose length
matches the lower boundt is a schedule of minimum length; A* is equal to the lower bound in such
cases.

This simulation serves to confirm the conclusions drawn in Sections 11.2 and 11.3.2. The
NN model yielded better performance than the SAS heuristic without the risk of incurring an
oscillatory NN state. Whereas 22% of the NN schedules have been verified to be optimum and
74% may be optimum, only 26% of the heuristic schedules may be optimum but none have been
verified; 64% of the NN schedules were shorter than the corresponding schedules generated by the
SAS heuristic. This simulation also confirms, as did the NAS simulation of Section 10.5, that the
use of time-varying P is beneficial to the NN performance. Furthermore, this simulation
demonstrates the model's ability to reliably generate sequential-activation schedules of minimum or
nearly minimum length for a diverse set of problem instances.

11.3.4 SAS of Highly Constrained Problem Instances

The SAS heuristic was able to find optimal eight-slot sequential-activation schedules for the
eight path sets listed in Table A4 in Appendix A of Ref. 16. These problems are more highly
constrained than the problems for which nine-slot schedules are needed (because approximately the
same total number of links must be scheduled), and they present a significant challenge to our
methodology. In a multiple-instance simulation of this set of problem instances, it was reasonable
to set N5,,,. to a large value (N5.,,,.4, = 500) because the minimum schedule length is known for
these problem instances, i.e., because Ba, = A*. The NN model that was used in this multiple-
instance simulation is the same as the one used in Section 11.3.3; it used skewed randomization,
the time-varying P, and GSA.

The large value of N Ma,, allowed the NN to find optimal schedules for each of the problem
instances. However, an average of 85.5 different initial states were required to find each of these
schedules. Typical schedules for these problem instances are about 96% maximal, i.e., 96% of the
slots are either used or blocked. The nearly maximal nature of these schedules verifies that these

*The schedules that have been verified to be optimal have lengths equal to a tightened lower bound on the schedule length

(see Appendix B of Ref. 16). The schedules that have been verified to be nonoptimal are longer than an admissible schedule
generated in a different simulation.

tTypically. this bound was B,,,, + 1 slots, because, as discussed in Appendix B of Ref. 16, it was found by contradiction that

the network could not be scheduled in B,,, slots. Therefore the bound was tightened to B,,, + 1 slots.
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particular problem instances are, in fact, highly constrained. Thus we have again demonstrated the
capability of our NN formulation to solve highly constrained problems.

11.4 Conclusions on the SAS NN Model

The results of this section have demonstrated the ability of the NN model to find minimum-
or nearly minimum-length sequential-activation schedules for several difficult problem instances.
They also indicate that the NN model is robust and can perform well in a broad class of scheduling
problems.

For example, the minimum-length sequential-activation schedule that satisfies the
communication requirements of Table 2 is nine slots. All of the SAS NN models have been able to
find such a schedule, with varying degrees of efficiency. In Monte-Carlo simulations that
scheduled the sequential activation of the links in this problem instance, the best performance was
obtained in a run that produced 64% optimal solutions using hybrid initialization (see Section
11.2). However, this model performed relatively poorly in the multiple-instance simulation
discussed in Section 11.3.2. On the other hand, the NN model using the path-length-dependent
form of initialization performed extremely well in multiple-instance simulations (Section 11.3.3>
but could not equal the performance of the hybrid initialization model in Monte-Carlo Simulations
of the problem instance given by Table 2. From these observations, we conclude that the NN
model using path-length-dependent initialization gives the best overall performance when
examining diverse problems. However, one of the other models might be better suited for a given
problem instance.

12.0 THE JOINT ROUTING-SCHEDULING PROBLEM

Our NN models discussed thus far have separately considered the problems of routing and
link-activation scheduling. We have used a two-phase approach in which the routing model
generates a set of communication requirements, which serves as the input for the scheduling mN
model. The routing NN model attempts to pick those paths that result in "small' numbers of
shared links among the chosen paths so that "congestion" at these links is reduced, permitting
relatively.short schedules to be generated. Minimization of congestion was chosen as the
performance measure because it was hypothesized that doing so would permit the generation of
short schedules. As we now discuss, this was not strictly true, but the schedule length required
for path sets with low congestion tended to be lower than that for path sets with high congestion.

To evaluate the hypothesis that minimization of congestion would permit the generation of
short schedules, the "congestion energy" (see Section 3) of each of the 858 path sets that admit
seven-slot nonsequential-activation schedules (the problem instances in the union of sets (7 7) and
(7, >7)) was calculated. Figure 21 compares the cumulative mass function of these results to that
obtained by considering all permutations of the paths in Table Al of Ref 16 (exhaustive search),
and to that obtained by considering all permutations of the subset of paths in the table that consists
of only the shortest paths between each SD pair (shortest-path heuristic). The figure shows that
the path sets that admit minimum-length nonsequential-activation schedules do, indeed, tend to
have low congestion energy. However, the relationship is not monotonic: The 12 path sets with
minimum congestion energy (33.25) do, in fact, admit seven-slot schedules, but only 12 of the 30
path sets that have congestion energy values of 33.75 admit seven-slot schedules. The congestion
energy of the 858 path sets that can be scheduled in seven slots ranges from 33.25 to 46.25.
However, 498,975 path sets have congestion energy in this range; thus, many path sets cannot be
scheduled in seven slots, even though they have lower congestion-energy values than some of the
path sets that can be scheduled in seven slots. The existence of relatively high congestion-energy
solutions that do admit optimum schedules and of relatively low congestion-energy solutions that
do not admit optimum schedules indicates that the routing and the scheduling problems are not
separable.
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From a different viewpoint, we have found that the shortest-path heuristic generally yields
a set of routes with reasonably low congestion energy. For the problem posed by Table Al of
Ref. 16, the set of paths chosen by the shortest-path heuristic (i.e., the path set with the lowest
congestion energy of any of the path sets in the restricted subset that includes only the shortest
paths between each SD pair) has a lower congestion-energy value than 56% of the path sets that
can be scheduled in seven slots. However, it turns out that none of the path sets considered by the
shortest-path heuristic can be scheduled in seven slots. In fact, the minimum-length nonsequential-
activation schedule for any of these path sets is nine slots.
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Fig. 21 - Congestion energy of the path sets that admit minimum length schedules

Although a path set that has a low congestion-energy value will probably admit a short
nonsequential-activation schedule, the above observations lead to the conclusion that the use of
congestion minimization as the sole criterion for route selection is inadequate to guarantee a
solution that can be optimally scheduled. However, for the routing-scheduling problem given by
Table Al of Ref. 16, selecting routes that minimize the maximum nodal degree in the network does
yield a set of paths that admits an optimal (seven-slot) schedule. This phenomenon results from
the absence - in any of the 858 path sets that have maximum nodal degrees of seven - of odd-
length cycles that require more than seven slots to schedule. As discussed in Section 7.1.1, odd-
length cycles may require more slots in the schedule than do the maximum-degree nodes. Since
verifying the presence or absence odd-length cycles is, in general, excessively computation
intensive, simply minimizing the maximum nodal degree is also inadequate to guarantee a solution
that can be optimally scheduled because the absence of odd-length cycles cannot be readily
verified.

Thus, selecting routes to minimize congestion energy or selecting routes to minimize the
maximum nodal degree in the network are both reasonable heuristic methods that tend to yield
solutions that admit short, if not optimum, schedules. However, neither approach is capable of
delivering solutions that can guarantee minimal values of schedule length. In fact, it appears that
any approach that separates the routing problem from the scheduling problem cannot do this.
Hence, a joint formulation is needed to simultaneously select routes and schedule link activations
optimally.
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The SAS problem is a restricted case of the NAS problem that would also benefit from a
joint routing-scheduling approach. Because link activations are restricted by the position of the
links in the paths as well as by adjacent links, route selection is even more critical for the SAS
problem than it is for the NAS problem. Therefore, a joint routing-scheduling formulation is
necessary and appropriate for this problem as well. The joint formulation proposed in the next
subsection addresses either NAS or SAS.

12.1 Problem Formulation

Our problem formulation combines the path selection problem addressed in Sections 3-5
with the scheduling problem discussed in Sections 6-11. Thus the problem becomes the
simultaneous choice of one of these paths for each SD pair along with the determination of an
activation schedule for each link along this path so that a schedule of minimum length with no
scheduling conflicts is produced. Since we are considering discrete packets, a combinatorial-
optimization formulation is again appropriate. In Ref. 16 we propose a NN model to address the
joint routing-scheduling problem. However, the NN designed for this application is extremely
complex and has not yet been implemented completely. Here we summarize some of the main
features of this model.

Problem Statement

Given a set of Nsd source-destination (SD) pairs and an equal number of sets of paths, the
ith of which contains Np(Q) paths connecting SD pair i, and one unit of traffic to be delivered
between each SD pair, select one path from each set of N (i) paths that satisfies the communication
requirements and schedule the activation of the links in ttese paths in a minimum number of slots.
As was done in addressing the scheduling problem, we can specify either sequential-activation
scheduling (SAS) or nonsequential-activation scheduling (NAS).

12.2 A Joint Routing-Scheduling NN Model

We would like to satisfy the specified communication requirements in A slots.t For every
link in each of the paths connecting the Nd SD pairs, we define A neurons, each corresponding to
one slot. We use four integers to index the neurons, i.e., neuron ijkt represents slot I of the kit
link in the jth path between SD pair i. As in the pure scheduling problems discussed earlier in this
report, the Lyapunov energy function consists only of constraint terms; there is no objective
function to be minimized. We have identified eight constraints that represent the desired objective
of the NN for the joint routing-scheduling problem. These constraints, which are listed below,
incorporate features of both the routing and scheduling constraints discussed earlier in this report
In Ref. 16, we also show the energy expression associated with each of the constraints as well as
the corresponding equation-of-motion term.

RS,. Activate (select) links from no more than one path per S) pair (a modification of
Eq. (9)).

RS 2 . Activate a total of exactly NPd paths in the network (a modification of Eq. (1U)).

RS3 . Activate exactly one path per SD pair (a modification of Eq. (11)>.

RS4 . Activate complete paths (a modification of Eq. (12)).

RS 5. Activate no conflicting links (no primary conflicts; a modification of Eq. (15)).

The model can easily be extended to handle nonunit traffic.
tAgain, we can use either a fixed schedule length or the adjustable-length method (described in Section S.33) under which
a penalty is incurred for using the higher-numbered slots.
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RS 6 . Activate a total of Nx neurons (a modification of Eq. (17)).

RS7. Schedule all activations in slots numbered less than or equal to some lower bound
on the schedule length (a modification of the constraint generated by the adjustable-
length NN model for scheduling, which was discussed in Section 8.3.3).

RS8. Sequentially activate the links in each path (a modification of Eq. (18)).

13.0 CONCLUSIONS

Although the issues of routing and scheduling in packet radio networks are highly
interdependent, few studies have addressed them jointly. In this report, we have posed the joint
routing-scheduling problem as one of combinatorial optimization, whose objective is to determine
the best set of paths between each of a number of source-destination pairs as well as the time slots
in which each of the links along these paths should be activated. Our approach has been to use
Hopfield NNs, which are known to provide good solutions to a wide variety of combinatorial-
optimization problems. Because of the complexity of the joint routing-scheduling problem, we
have first studied the two problems individually and have demonstrated the capability of Hopfield
NNs to provide good solutions for both of these problems. We have made observations on the
degree of separability that exists between these problems, and we have also presented a
formulation for the joint problem.

The Hopfield NN methodology is different from more-traditional algorithmic or simulation
approaches to combinatorial-optimization problems. For example, this approach involves
embedding a discrete problem in a continuous solution space. The NN is "programmed" by
implementing the set of connection weights and bias currents that correspond to the "energy"
function that is to be minimized. This energy function is a linear combination of the desired
objective function and energy components that are related to the constraints that must be satisfied
by valid solutions.

An analog hardware implementation of a Hopfield NN will normally converge to its final
state within at most a few RC time constants, thus providing an extremely rapid solution to a
complex optimization problem. In our studies (as in most studies of this technique) we have
simulated the system dynamics in software. Although such software solutions are extremely time-
consuming, they verify the soundness of the use of the Hopfield NN approach for optimization
problems of this type and suggest that hardware implementations may be worthwhile. In fact,
hardware implementation may be feasible for problem sizes that exceed by far those that can be
handled in software.

The most critical issue in the design and simulation of a Hopfield NN model is the choice
of the coefficients used in the connection weights. Most studies of Hopfield NNs have used trial-
and-error methods to determine acceptable values for these coefficients, a process that is tedious at
best and often ineffective. We have used the method of Lagrange multipliers (LM) to determine
good values for these coefficients. This method permits the coefficients to dynamically vary with
the evolution of the system state. Although some experimentation is still needed to determine good
values for system parameters such as bias currents and time constants, our studies have shown that
acceptable values for these parameters are generally found rather quickly when the LM method is
used. Furthermore, the results are generally better than those obtained when using constant valued
coefficients.

To assess the performance of our NN models, a benchmark is needed against which to
compare them. In our smaller routing examples, such as the 24-node network with 10 SD pairs,
an exhaustive search of all possible solutions has been possible. In some of our studies of this
network, globally optimal solutions were in fact found in almost all runs; in other examples, near-
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optimal solutions were found most of the time. Although it has not been possible to determine the
optimal set of paths for our 100-node network by exhaustive search (because the number of
possible states makes doing so prohibitive), it is significant to note that all of the solutions
produced by our NN model are better than the solutions found by our shortest-path heuristic. We
are strongly encouraged by the capability of our simulation model to handle NNs with nearly 100
neurons.

Although the solutions obtained by the link-neuron routing NN model are typically not as
good as those produced by the path-neuron model, the link-neuron model does, in fact, represent a
significant advance in our study of NN applications to network problems. In particular, the ability
of this model to generate complete paths by using excitatory connections between neurons
belonging to the same path can be viewed as a first step toward the more general, and more
difficult, routing problem in which the paths between each SD pair are not specified in advance. In
that case, the NN must piece together complete paths from individual links.

We have also addressed the use of Hopfield NN models to solve the problem of link
activation, or scheduling, in multihop packet radio networks. Both nonsequential-activation
scheduling (NAS) and sequential-activation scheduling (SAS) models have been studied. In
addition to using Lagrange multipliers, other important aspects of our models include incorporating
heuristics into the equations of motion and using Gaussian simulated annealing, both of which
encourage the evolution of the NN to optimal solutions.

Extensive simulation results have demonstrated the capability of our models to find
optimal, i.e., minimum-length, schedules in many cases for which our heuristic (ie., non-NN)
approach was unable to do so. The degree of success obtained by the NN models is related to the
degree to which the problem is constrained. For example, in some Monte-Carlo simulations of
NAS problems, all of the solutions obtained from 100 different initial states (random seeds) were
optimal. For a very highly constrained problem, in which 99.6% of the slots were either activated
or blocked in a typical schedule, 21% of the solutions were optimal. Although this may appear to
be a small number, it is notable that the NN model was able to determine optimal schedules for
such a highly constrained problem, whereas our purely-heuristic approach was unable to do so. In
studies of the SAS model, as many as 79% of the solutions were optimal.

Analysis of the sensitivity of our scheduling NN models to variations in parameter values
and communication requirements has shown that both models are fairly robust. Both the NAS and
the SAS models have produced optimal or nearly optimal schedules for a number of diverse
problem instances without the need to adjust the parameters to accommodate different
communication requirements. Simulations have shown that the performance of the NN does
depend on the set of parameter values, but good performance is achieved over a broad range of
these values.

The fact that global minima are not always found (a common characteristic of Hopfield
NNs) is typical of heuristic algorithms for the solution of difficult combinatorial-optimization
problems. In many such problems, optimal solutions cannot be guaranteed without exhaustive
search. However, the inability to guarantee a global optimum is mitigated by the fact that repeated
runs are possible from different initial conditions; thus the best solution that is found can be chosen
as the solution to the problem. Although the simulation runs begin in random initial states, this
method is not simply one of random search; system evolution is guided by the equations of
motion, which are derived from the energy function, which in turn is based on the objective
function and the system constraints. The fact that most of our solutions are so close to the
optimum value in such a large fraction of the cases studied demonstrates the robustness of our
models and suggests that they may perform well in considerably larger examples as well.

Our studies of routing and scheduling problems have verified our hypothesis that these two
network control functions are not independent and that schemes should be developed that jointly
choose routes and link-activation schedules. We have characterized the joint routing-scheduling.
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problem as a combinatorial-optimization problem, and we have outlined the major components of a
NN model for its solution. However, it would be difficult to simulate this model in software
except for very small networks, because of the large number of neurons and interconnections that
are involved. It is hoped that future developments in the hardware design of NN components will
be able to incorporate the techniques developed in this study to permit the solution of complicated
communication network control problems of this type.
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THE PROBLEMS OF ROUTING AND SCHEDULING IN
MULTIHOP RADIO NETWORKS - A HOPFIELD

NEURAL NETWORK APPROACH

1. 0 INTRODUCTION

Two of the most important facets of multihop packet radio network design and control are
routing and channel access. Although these issues are highly interdependent, few studies have
addressed them jointly (e.g., see Refs. 1-3). For example, the choice of routes determines the
amount of traffic that must be carried over each of the network's links, and thus determines the
communication requirements that must be satisfied by the channel-access mechanism. Despite the
intimate relationships that exist between these network control mechanisms, they are almost
invariably addressed separately, resulting in network operation that may be far from optimal. In
this report we make a step toward the development of schemes for the joint control of routing and
channel access by making use of the recently developed Hopfield neural network (NN) method for
the solution of combinatorial-optimization problems.

We assume the use of a contention-free form of channel access, which is alternately known
as "link activation" or "scheduling" [4-6], Under this channel-access mechanism, the nodes are
assigned noninterfering, periodically recurring time slots in which to transmit their packets. In
generating these transmission schedules, it is possible to take advantage of the spatial separation of
the nodes, thus permitting two nodes separated by a sufficiently large distance to transmit
simultaneously. In spread-spectrum code-division multiple-access (CDMA) systems, it is also
possible for several nodes in the same vicinity to transmit simultaneously, provided that they use
different frequency-hopping patterns. The determination of optimal schedules, i.e., schedules that
satisfy the traffic demand in the minimum number of time slots, is a difficult combinatorial-
optimization problem. In fact, it is by now well known that this problem, in almost all of its
forms, is NP-complete (i.e., cannot be solved by an algorithm of polynomial complexity) [1, 2,
7]. Thus heuristics are generally used to produce suboptimal link-activation schedules. Reference
8 presents a discussion of link-activation methods, with an emphasis on CDMA considerations.

An alternate approach to the link-activation problem is the use of a Hopfield NN to generate
good, although not necessarily optimal, communication schedules [9]. Under this approach, the
scheduling problem is transformed into a graph-coloring problem, which is known to be NP-
complete. The objective of this problem is the determination of a coloring of the graph that
requires the minimum number of colors, where each color corresponds to a time slot. A Hopfield
NN is then designed to solve the corresponding coloring problem. As a result of the successful
application of this method to the scheduling problem, we decided to extend it to the joint routing-
scheduling problem. Our approach fits well into the currently widening interest of the research
community in applying NN methods to communication and control problems (e.g., see Refs. 10,
11). Reference 12 discusses a NN approach for a different version of the routing problem.

Like the pure scheduling problem, the joint routing-scheduling problem can also be posed
as a combinatorial-optimization problem. Our study is, in fact, the first formulation of the joint
routing-scheduling problem as a problem of combinatorial optimization. The objective is now to
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Appendix A

HOPFIELD NEURAL NETWORKS AND THEIR APPLICATION TO
OPTIMIZATION PROBLEMS

Since the introduction of the use of neural networks (NN) for the solution of combinatorial-
optimization problems by Hopfield and Tank [Al], there have been many applications of that idea
to diverse optimization problems of high computational complexity. In this appendix we review
the principles of Hopfield NNs, and we show why they are well-suited to such problems. Our
discussion is based primarily on the Traveling Salesman Problem (TSP), which was the
application originally considered by Hopfield and Tank, and which has been perhaps the most
widely studied combinatorial-optimization problem. It is hoped that this appendix will provide
enough background material to facilitate an understanding of the NN models we have developed
for routing and scheduling problems.

A. 1 Hopfield Neural Networks

A NN consists of a large number of elements that behave like simple analog amplifiers, and
are highly interconnected in a manner that permits highly parallel and fault-tolerant computation.
These amplifier elements are called "neurons" because their behavior is similar to that of biological
neurons, which are also simple highly interconnected analog devices. Each neuron corresponds to
a binary variable in the system that is being modeled by the NN. A Hopfield NN is a NN with a
special structure that can achieve a very rapid solution to a specific optimization problem.* The
generic combinatorial-optimization problem that is solved by a Hopfield NN consists of
determining which of the neurons should be "on" (have a value of 1) and which should be "off"
(have a value of 0) so that some cost function is minimized.

In a Hopfield NN, the strengths of the pairwise connections between neurons are chosen
so that the desired objective function is minimized. Appropriate choice of connection strengths
also ensures that any constraints that are present in the optimization problem are not violated. We
note at the outset that the solutions provided by Hopfield NNs are not necessarily optimal because
local rather than global minima may be found. Also, the class of objective functions that can be
minimized by this method is somewhat limited. However, reliable convergence to good solutions
has been demonstrated for a number of difficult and important combinatorial-optimization problems
including those discussed in this report.

The neuron input-output relation typically has the sigmoidal form

Vi = g(ui) = 2 [1 + tanh (Ui)

Other types of NNs are well-suited for learning applications, including a wide range of pattern-recognition tasks,
References A2 and A3 are general references on NNs.
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as shown in Fig. Al. Here, V1 is the output voltage of neuron i (which can take on values beteen
o and I), ui is the input voltage to neuron i (which can range from -- to etX and u, is a parameter
that characterizes the slope of the nonlinearity. A key feature of these networks is, in fact, the
analog nature of these processing elements, which permits the embedding of discrete problems in a
continuous solution space. As we discuss later in this appendix, permitting the search for an
optimal solution to proceed through the interior of a continuous region yields better solutions than
are possible with strictly digital processing elements, and determines them very rapidly when Xt
NN is implemented in hardware.

Figure A2 shows a portion of a Hopfield NN. The output of each neuron is connected to
the inputs of a number of other neurons through resistors whose values are chosen to control the
level of interaction between the neurons. Each neuron has both normal and inverted outputs thus
it can provide either excitatory or inhibitory synaptic connections as needed. Neurons normally
interact with each other on a pairwise basis. In particular, a synapse between neurons i andj is
defined by a connection weight Tiq (implemented by using a resistor of value 1/ITyI), whose value
is positive if the connection is excitatory and negative if it is inhibitory. For example, assume that
an inhibitory connection is present between neurons i and j (i.e., Tij is negative). If neuron i is
"don" it will discourage neuron j from turning "on," and conversely. Actually, since the output
voltages take on analog values between 0 and 1, the degree of inhibition applied to neuron j is
proportional to the output voltage of neuron i. In addition, bias currents can be applied directly to
each neuron, e.g., Ij is applied to neuron i. These bias currents represent fixed inputs that are
applied to the neurons, and they are independent of the state of the other neurons in the network.
The combined effect of the connection weights and bias currents encourages the NN to find a
solution that minimizes the desired function while satisfying a number of problem constraints, as
we describe in the following.

Hopfield NNs evolve from some initial state to a final state that represents a local (but not
necessarily global) minimum of the Lyapunov energy function

IVA? N
E = - YTqyVjVV- jIj

2 i=1 k=1 =

where N is the number of neurons. Thus an N x N connectivity matrix T can be defined whose
elements are the connection weights T1 Convergence to a stable state is guaranteed as long as the
connections are symmetric (i.e., Tij = Ti [All. These conditions are satisfied in many problems
of practical interest.

In the above expression, the double summation represents the pairwise contribution to the
energy by all possible pairs of neurons (which are weighted by the connection weights T ); the
single summation represents the contributions that the neurons make on an individual basis (which
are weighted by the bias currents ,. Note that the Tkj's and ai's represent the combined impact of
the function to be minimized and the constraints that are to be satisfied. More complicated forms of
the energy function have also been considered in the literature, e.g., those that include connection
weights for triplets of neurons (e.g., Tjs connecting neurons 4,1 and k, which results in a
contribution of the form TqAVIkVjV). 4 owever, they are generally much more difficult to
implement, and it is not clear that they offer an advantage; thus we did not consider them in this
study.

In the limit of high gain (i.e., a steep nonlinearity in the input-output relation of a neuron>,
the minima of the energy function occur only at the corners of the N-dimensional hypercube, i.e.,
for neuron output voltages of V; = 0 or 1. Thus, although the system state evolves over the
interior of an N-dimensional hypercube, the solution corresponds to a discrete system
representation in which one of the 2N cormers is selected.
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Fig. A2 - Portion of a Hopfield NN

Clearly, the form of the energy function presented above is not completely general, so it is
not possible to define such a Lyapunov function for some minimization problems. However, a
variety of interesting and diverse problems have been formulated by using Hopfield networks. For
example, Ramanujam and Sadayappan studied several graph-partitioning problems [A4], Brandt et
al. studied the list-matching problem [A5], and Foo and Takefuji studied job-shop scheduling [A6,
A7]. We note that when the function to be minimized is not of the form shown in the above energy
equation, it is often possible to define a related energy function that provides good, although not
necessarily optimal, performance for the problem of interest. We have, in fact, done so in our
studies of Hopfield NNs for minimizing congestion in networks.

Examination of Fig. A2 yields the following form for the equation of motion at neuron i:

du t af '1dui _ H _ E = Hi+ 1: TijVj + Ai,
Ir avi ~~j=l

where t = RC (which may be set equal to 1 without loss of generality) is the time constant of the
RC circuit connected to the neuron. As the system evolves, the energy function decreases
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monotonically until equilibrium at a (local) minimum is reached. Since only a local minimum can
be guaranteed, the final state depends on the initial state at which the system evolution is started.

The NN is "programmed" by implementing the set of connection weights and bias currents
that correspond to the function that is to be minimized. An analog implementation of a Hopfield
NN will normally converge within at most a few RC time constants, thus providing an extremely
rapid solution to a complex optimization problem. In our studies (as in most studies of this
technique) we have simulated the system dynamics in software Although such software solutions
are extremely time-consuming, they verify the soundness of the use of the Hopfield NN approach
for optimization problems of this type and suggest that hardware implementations may be
worthwhile.

To illustrate the considerations associated with the selection of these system parameters, we
now discuss the application of Hopfield NNs to the Traveling Salesman Problem (TSP). Since
some of the optimization considerations associated with our routing and scheduling problems are
similar to those related to the TSP, a discussion of the TSP provides useful background material
for the presentation of our model. It also permits us to highlight the differences between our
problem and the TSP, and thus to illustrate some of the novel contributions of our research.

A.2 The Traveling Salesman Problem-A Hoprield Net Formulation

The Traveling Salesman Problem is one of the classic NP-complete problems of
combinatorial optimization, and it provides a convenient vehicle to explain the use of the Hopfield
NN methodology. Although practical complications arise when the number of cities exceeds
values of around 50, recently developed techniques may extend the power of the Hopfield NN
approach to considerably larger problems. Fortunately, such limitations are not always
encountered; our methodology has permitted the simulation of rather large examples, which are
discussed in this report.

The TSP is defined as follows. A salesman would like to visit each of a set of t cities
exactly once and return to the city of origin, while minimizing the total distance traveled. He is
given the pairwise distances of separation dij between cities i and j (1 • i c n, I J < nti *i•X It is
easy to see that there are n! possible solutions, i.e., orderings of the cities. By observing that each
solution has a 2n-fold degeneracy (because the same tour can begin in any city and reversing the
order of tour does not affect the cost function), the number of distinct paths is reduced to nt/2n.
However, this number is still far too great to examine by exhaustive search when n is large, and
heuristics are normally used to provide suboptimal solutions [AS]. Like these heuristics, the
Hopfield NN approach cannot be expected to produce the optimal solution at every attempt. A
reasonable expectation is the determination of good solutions a significant fraction of the time, as
we explain in detail later.

The TSP requires that we specify the sequence in which the n cities are visited. A natural
way to represent any particular solution is in the form of a permutation matrix, such as that shown
below for a five-city problem. In this array, the letters represent the cities and the numbers
represent the position on the tour. For example, city C is visited first because in row C a 'I'
appears in the first column. Similarly, city A is visited second because in row A a "I" appears in
the second column. Continuing in this manner, the entire tour is specified by the sequence C2 A,
E, B, D, C. Clearly, since each city must be visited exactly once, there is exactly one 'l" in each
row. Similarly, since only one city is visited at a time, an admissible solution has exactly one "I"
in each column. The length of the tour corresponding to this particular sequence is dcA + dAE +

dEB + dBD + drc.
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position in tour

1 2 3 4 5
A0 1 0 0 0

city B 0 0 0 1 0
C D 0 0 1 0
D 0 0 0 0 1
E 1 0 1 0 0

To formulate this problem as a Hopfield NN problem, a neuron is defined for each element
of the array. In general, the notation Vxj represents the output voltage of the neuron corresponding
to city X being visited in the jth position on the tour. Thus N = n2 neurons are needed to represent
the state in a problem with n cities. The following energy function is defined to reflect the desire to
minimize the total path length while satisfying the constraints just described:

E = -aX X X VxiVxj + b Y E Y VX Vy, + 2(XvxE Vxi - n)
X i jhi i X Y•X x i

+ X X E dxyVxi(Vyi+l + Vyi-l) -
x y~xi

The first three terms represent the effect of equality constraints, and each must be zero if these
constraints are satisfied. In particular, the first term is zero if and only if each city row contains no
more than one " 1;" i.e., each city must be visited not more than once. The second term is zero if
and only if each position-in-tour column contains not more than one "1;" i.e., only one city can be
visited at a time. Finally, the third term is zero if and only if there are exactly n "1" entries in the
entire matrix. The last term represents the total distance traveled, and is thus the performance index
that we actually want to minimize. Note that the subscripts are defined modulo n, so that the city n
is adjacent to both city n-l and city 1. In all cases, the factor of 1/2 is present because the
summations include all terms twice. Later in this appendix we discuss some issues related to the
choice of the coefficients a, b, and c.

We emphasize that the neuron output voltages take on values in the continuum (0,1). The
permutation matrix condition is normally satisfied only when the system has reached equilibrium.

In the last few years, a number of alternative formulations of the energy function have been
developed for the TSP under which different forms of the constraints are imposed on the system
and for which better performance is claimed; e.g., see Ref. AS. However, we confine the present
discussion to Hopfield and Tank's energy function because the objective of this appendix is to
demonstrate the application of Hopfield NNs to constraint-satisfaction problems, and this can be
done without an exhaustive discussion of the totality of NN methods that have been developed for
this problem.

Given the above form of the energy equation, the form of the connection weights is easily
determined as follows:

Txiwyj = - axy(l-4 1 ) - bbj(l-&xy) - c - ddxy(4.i+l + 4v-l)

where 8ry is the Kronecker delta (i.e., 8y = 1 if i =j and is 0 otherwise). The external input bias
currents are simply

Ixi = c nf.
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The corresponding equation of motion for the input voltage to neuron Xi is

X- -'Xi -- aXs Vx1- b VE Vy- c (I Vx j - )dxVyj-l + Vyj4d.
i-i Y$X X j YOX

Recall that Vxi = I means that city X is visited in the ith position of the tour. Thus, a negative
value of duxidt tends to turn neuron Xi "off' (discouraging the visiting of city X in the ith
position), whereas a positive value tends to turn it "on." In numerical simulations, the input
voltages are updated synchronously as follows:

"r - U1d + At [d] o

The new output voltages are obtained by passing the updated input values through the nonlinearity
V1 = g(ut). In their simulations of a ten-city TSP, Hopfield and Tank used the following parameter
values: a = b = 500; c = 200; d = 500; us0 = 0.02; and T = 1, The value of At was not mentioned in
Ref. Al, but 10-5 appears to be a reasonable value for use with these system parameters (see e.g.,
Ref. A9). If At is too large, the system may evolve too rapidly, thereby missing optima and
possibly resulting in oscillations; if it is too small, then convergence takes an excessively long
time. The choice of system parameters for the connection weights and bias currents is a crucial
aspect of the NN design problem. Later in this appendix we discuss the issues associated with the
choice of these parameters and the consequent impact on NN design and performance.

The equations of motion have a satisfying intuitive interpretation. The first term simply
represents the RC decay of the input voltage to the neuron. The next three terms represent the
impact of the system constraints on system evolution. We refer to each of them here by the
coefficient that multiplies them, i.e., as the a, b, and c terms. As discussed earlier, the a term
represents the constraint that city X be visited only once during the tour. Thus, if any of the other
Vxfs are nonzero (which correspond to visiting city X in position i, the input voltage to neuron
Xi is reduced. Similarly, the b term represents the constraint that only one city be visited in
position i. Thus, if any of the other Vy1's are nonzero (which correspond to visiting city Y in
position i), the input voltage to neuron Xi is reduced. Note that the a and b terms are purely
inhibitory, i.e., they cannot be positive. The c term represents the constraint that exactly n neurons
be turned "on" in the entire NN, and it is excitatory if an insufficient number are currently on and
inhibitory if too many neurons are currently on. This term is the same for all neurons in the
network.

The d term, which represents the impact of the length of the tour on the input to neuron Xi,
is a purely inhibitory term. It is less inhibitory when the distances between consecutive cities are
small and more inhibitory when they are large.

It is important to note that although the equations of motion reflect the constraints that must
be satisfied by admissible TSP tours (which are characterized by neuron output voltages that are all
O's and l's and that satisfy the permutation matrix constraint), they are applied to a continuous
system in which the output voltages can take on values in the continuum (0, 1). As should be clear
from the equation of motion, the impact of an inhibitory connection is proportional to the output
voltage of the neuron that supplies it. Normally, the TSP constraints are not satisfied until an
equilibrium state is reached.

in the problem formulation, n is the number of cities. However, Hopfield and Tank
observed that when this number was used in the equations of motion, it was difficult to ensure that
a sufficient number of neurons were activated. A possible explanation is that it is difficult to
overcome the inhibitory effect of the d term, which was discussed above. Thus additional bias
current is needed to, in effect, adjust the neutral positions of the amplifiers. The bias current
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appears in the equation of motion as the quantity cn. Without changing the size of the problem
(i.e., the number of neurons in the model), one can increase n in that equation to effect the desired
increase in bias current. This was done by choosing n = 15 for the 10-city problem.

An initial state must be chosen as the starting point for the iteration. Although we are
searching for an admissible solution (i.e., one for which all neuron voltages are 0 or 1 and for
which all constraints are satisfied), it is not advisable to start the search from such a state. This is
because it is difficult to leave a state in which the constraints are satisfied, since doing so often
results in an increase in system energy. To permit a search over a larger portion of the N-
dimensional hypercube, a value in the interior of the search space is chosen as the starting point.

Nominal initial values of the neuron input voltages were chosen to be equal to the same
constant uoo, so that no tour would be preferred above any other a priori. For the 10-city problem,
uo was chosen so that

Xi = 10.
x i

This value is reasonable because it is the desired value of the summation when convergence has
been reached. However, it is inadvisable to start the iteration with all voltages exactly equal
because it is then difficult for the NN to break the symmetry and thus to choose a promising
direction for the search. Therefore, the nominal initial values of the neuron input voltages were
then perturbed by a small amount (a different random number, uniformly distributed between
-0. 1u0 and +0. Lu, for each neuron) before beginning the iteration. Typically, a large number of
simulation runs (e.g., 100) are performed, each with a different random seed. Although not all
solutions will necessarily be good (or even admissible), the best solution from a collection of runs
can be chosen as the solution to the problem of interest. We note that system evolution from any
given initial state is deterministic. The only randomness in this model arises from the use of a
random initial state.*

A key feature of the system evolution, as discussed earlier, is that the system state evolves
in the interior of the N-dimensional hypercube, whereas admissible tours can be described only on
the corners. Thus the neuron voltages can be interpreted as solutions of the TSP only when
convergence has been reached (i.e., the permutation matrix condition of exactly one "1" per row
and one "1" per column is satisfied). In practice, convergence can be declared as soon as there is a
clear "winner" in each row and column such that this condition is satisfied, although it is often
advisable to continue the iteration until relatively tight thresholds are satisfied because it is possible
for changes in system state to occur (e.g., voltages above 0.9 could correspond to "1 " and voltages
below 0.1 could correspond to "O").

Hopfield and Tank have, in fact, demonstrated that the use of analog neurons provides
considerably better performance than the use of binary neurons. The same energy equation and
equations of motion were used in the simulation of a discrete system. However, a simple
threshold was used to determine whether each neuron's output voltage was 0 or 1. The solutions
that were found were of considerably poorer quality (i.e., greater tour length) than those obtained
by using analog neurons. This is true because the use of binary neurons forces the search to make
a binary decision on the state of each neuron at each step of the iteration, thereby limiting the search
to the corners of the hypercube. In contrast, the use of analog neurons enables the solution to
follow trajectories of decreasing energy, thereby permitting decisions to be postponed until there is
a clear winner. In general, use of too steep a nonlinearity (too small a value of ua) confines the
search to a region near the edges of the hypercube, and may thus prevent the finding of the best

* Later in this appendix we discuss the use of simulated annealing, which is a technique that applies noise of gradually
decreasing power to help the search escape from local minima, and thereby find the global minimum.
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paths. On the other hand, use of a linearity whose gain is too low will result in final states that are
not sufficiently close to O or 1.

A.3 On the Selection of Parameters for the Hopfield Neural Network

A difficult aspect of the design of Hopfield NNs is the choice of the parameters used in the
connection weights; for the case of the TSP formulation discussed here, we are referring to the
parameters a, b, c, and d. We noted earlier that each of the three constraint terms in the energy
function (which are multiplied by a/2, b/2, and c/2, respectively) vanish when the problem
constraints are satisfied. Thus, in principle, it is possible to reach a minimum of the energy
function for any values of these parameters. However, the relative magnitudes of these parameters
have a profound effect on the direction of system evolution throughout the N-dimensional
hypercube. Their choice is critical not only to the quality of the solutions that are obtained (i.e., the
tour length), but also to whether convergence to admissible solutions (i.e., solutions for which all
constraints are satisfied) is, in fact, achieved.

The coefficients a, b, c, and d reflect the relative importance of the corresponding terms in
the energy equation. In Hopfield and Tank's studies, these parameters were chosen by trial and
error to determine the values that result in the best performance. We make the observation here that
use of an overly large value of d (in comparison to a, b, and c) may lead to solutions that do not
visit all cities. Inadmissible states that may occur include those in which some cities are visited
twice as well as those in which no neurons are activated in a particular tour position. Such
behavior may arise because in this case the NN is concerned primarily with minimizing the length
of the tour, not with the generation of complete tours. Similarly, if d is too small, overly long
tours may be generated because not enough importance is given to the lengths of the tours. The
values of the coefficients that represent the equality constraints, i.e., a, b, and c, must also be
determined carefully.

Another important parameter is the bias current, which for all neurons is Ii = cn. We noted
earlier that Hopfield and Tank used a value of n = 15 in a network corresponding to 10 cities
because additional bias was needed to ensure that the correct number of neurons was activated.
The two other system parameters are the slope of the nonlinearity (Hopfield and Tank used u =
0.02) and the time step size At (the value of which was not specified).

Selecting system parameters by trial and error is a tedious process. Moreover, convergence
to admissible low-energy solutions is not guaranteed. For example, Wilson and Pawley [A9%,
while acknowledging the fundamental importance of Hopfield and Tank's method, claimed that
they were unable to reproduce the low-energy solutions that Hopfield and Tank claimed they found
in their initial study. Most of Wilson and Pawley's runs did not converge to admissible tours, and
those that did were only slightly better than randomly chosen tours. After examining the use of
several heuristics to choose connection weights, they concluded that the basic method is unreliable.

A number of other researchers have also investigated the issues associated with the choice
of parameters for Hopfield-Tank TSP networks. For example, Hegde, Sweet, and Levy [AIQI
claim to have developed a "cookbook" approach for the determination of these parameters, and
they provide an explanation of why these networks seem to be of decreasing usefulness as the
number of cities increases. Brandt et al. [A5J present an alternative energy function that they claim
provides better results than the original formulation. Kahng [Al 11 examines the strengths and
limitations of the Hopfield-Tank formulation, and summarizes a variety of heuristics that have been
proposed for NN implementations for the TSP. Although his assessment of the Hopfield-Tank
approach is more favorable than that of Wilson and Pawley, he notes that its lack of robustness
may limit its applicability.

Few studies of the Hopfield NN model have gone deeper than a study of the behavior of
the differential equations that determine the course of system evolution. One that has done so is a
recent paper by Aiyer, Niranjan, and Fallside [A121, who analyze the elgenvalues of the
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connection matrix for the TSP and the geometry of the corresponding subspaces. They provide an
explanation of the dynamics of the Hopfield network, including a procedure for the determination
of the coefficients in the connection matrix. They claim convergence to admissible solutions 100%
of the time for problems with as many as 50 cities. Moreover, the average quality of the solutions
for TSPs with up to 30 cities was at least as good as those produced by the nearest neighbor
algorithm [A8], which is a well-known heuristic for the TSP. Although the 50-city problem is still
small, in terms of the TSP problems that can be solved by other (non-NN) methods, the results of
Ref. A12 indicate that the Hopfield NN is applicable to larger combinatorial-optimization problems
than previously believed.

A.4 The Use of Lagrange Multipliers to Determine the Coefficients in the
Connection Weights

All of the approaches discussed thus far have used constant values for the parameters a, b,
and c. Wacholder, Han, and Mann [A 13] made the crucial observation that, since these parameters
are associated with equality constraints that have been incorporated into the energy function, they
can be modeled as Lagrange multipliers. This approach permits the connection weights to evolve
with the system state and adapt to problem-specific parameters. The problem they addressed was
the Multiple Traveling Salesman Problem (MTSP), which is an extension of the standard TSP
problem. Under the MTSP, M salesmen are to start from a specified city and cooperatively visit
the remaining N-1 cities, such that each city is visited by exactly one salesman, all cities are to be
visited, and the total tour length is to be short.

We illustrate this method for the standard TSP (the details of the MTSP are not critical here)
by rewriting the energy function in the following form:

E = 3 XiEi + Ep,
1=1

where ?q = a/2, X2 = b/2, and X3 = c/2. The El's represent the corresponding "constraint energy"
terms (all of which are zero for an admissible solution), and Ep is the path length of the tour (the
term associated with parameter d). The iterative equation for the input voltages is the same as
before, except that the Xi's are used instead of the fixed values of a, b, and c. However, the
Lagrange multipliers also evolve as

IElat =- i

The use of the absolute value here is based on a recommendation by Platt and Barr [A14] as a
means to encourage the satisfaction of the constraints. In iterative form, this is expressed as

x, = d + ArEi~ld,

where it is reasonable to set the initial values of the Xi's equal to 1. The Xi's thus increase in
proportion to the corresponding constraint energy. Thus, when a constraint is not satisfied, the
corresponding connection weights continue to increase, thereby encouraging movement in a
direction that will ultimately satisfy the constraint. Finally, when the constraint on El is satisfied
(in which case E1 = 0), Xi stops increasing.

The coefficient multiplying the tour length (i.e., d) cannot be determined in this manner
because this term in the energy equation is the quantity that is to be minimized; it does not represent
an equality constraint. A typical value for d would be about I (± 0.5).
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The primary advantage of this method is that it eliminates the need to perform a trial-and-
error search for the best system parameters. Such a search is especially time-consuming in large
networks because many (e.g., 100) runs with different random initial conditions are typically
needed to assess the performance achievable when a particular set of parameters is used. In
addition, based on our application of this method to routing problems, we suspect that the dynamic
nature of the Xi's provides better performance than the use of the best set of coefficients with
constant values. This is-because the relatively small initial values of the Xt's permits the search to
emphasize somewhat the desire to minimize the performance index (tour length in the TSP and
network congestion in the routing problem) during the early part of the iteration. Toward the latter
part of the iteration, the increased values of the Xi's more heavily penalize system states in which
the constraints are not satisfied; thus the neuron voltages move closer to binary values, and
equilibrium states are reached in which an admissible set of neurons is active.

Wacholder, Han, and Mann [A13J successfully tested this method on problems with up to
30 cities and five salesmen, and claimed that the algorithm always converged rapidly to admissible
solutions. Like the standard implementations of Hopfield networks for the TSP, it should be
possible to implement a system that incorporates the Lagrange multiplier method in hardware.
Therefore, this approach represents an important advance in implementing Hopfield nets for
combinatorial-optimnzation problems.

We have used the method of Lagrange multipliers in most of our NN studies and have
concluded that this approach aids greatly in the reliable convergence to good solutions. Our studies
have shown that despite the need for some parameter adjustments it is relatively fast and easy to
determine good values for these parameters. Use of this method has provided considerable
improvement as compared with the trial-and-error method for determining system coefficients,
both in terms of the quality of solutions and the ease with which they have been obtained.

AS Simulated Annealing and the Search for the Global Minimum

We have noted that the equilibrium states reached by Hopfield NNs are generally local,
rather than global, minima of the energy function. The reason that only local minima can be
guaranteed is that the equations of motion force the system state to follow a trajectory of decreasing
energy; thus it is normally not possible to escape from local minima.* Simulated annealing (SA)
[Al5-A17] is a probabilistic hill-climbing algorithm that facilitates the escape from local minima so
that the global minimum can be found. Under this technique, the energy function normally follows
a gradient descent; however, random perturbations are applied to permit occasional transitions to
states with higher energy. If these perturbations are large enough, it is possible to escape the local
minimum, thereby permitting the search by gradient descent to resume in a new location in th
search space. We first discuss the basic SA method, and then discuss its use in conjunction with
the Hopfleld NN model.

The terminology of simulated annealing is based on an analogy with the physical annealing
process, in which the material under study is first heated past the melting point and then cooled
very slowly until it solidifies, to ensure that a minimum energy state is achieved when the final
temperature is reached. If the material is cooled too rapidly, random fluctuations that occur during
the cooling process will cause imperfections, e.g., a crystal grown with a large number of defects,
which corresponds to a state other than that of minimum energy.

We first consider the application of SA to a purely discrete optimization problem, in which
each of a number of binary variables is to be set to 0 or 1. At each instant in time the value of a
variable that is chosen at random is switched. If this switch results in a lower energy, the switch is

* It may be possible to move to a state with higher energy in a system in which the connection weights are time varyinag,
such as in the Lagrange-multiplier method discussed earlier.
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coordinate the choice of routes and schedules so that communication requirements are satisfied in
the minimum number of time slots. Because of the size of the NN needed for the joint routing-
scheduling problem, we have found it advantageous to separately consider the routing and
scheduling components before implementing a NN to solve the entire problem. Although these
problems are not independent, addressing them separately is expected to provide reasonably good
performance and to provide insight into the design of the NN for the combined problem.

Our study has consisted of two primary phases. In the first we have implemented a NN
model that chooses routes, based on the criterion of minimizing congeston. In the second, we
have implemented a NN model that schedules packets over these routes. We have also addressed
the issues in the design of a NN model for the joint routing-scheduling problem. This report
summarizes these models and demonstrates the performance that has been achieved. Both are
are discussed individually in Refs. 13 and 14, and in considerably greater detail, in Refs. 15 and
16. Our NN models have also been presented at technical symposia [17-19J.

1.1 A Hopfield NN for the Minimization of Congestion

The first problem we address is as follows. Given the connectivity graph of a radio
communication network, a set of source-destination (SD) pairs, a specified level of traffic between
each SD pair, and a set of paths connecting each SD pair, select a single path between each SD pair
so that network congestion is mininized.

The first step in the development of a NN model is defining neurons that correspond to
binary variables in the system that is being modeled. Most of our routing studies have focused on
a path-neuron NN model in which one neuron is defined for each path between every SD pair. We
define an energy function that reflects the desired goal of minimizing congestion and that
incorporates the constraints that are associated with the activation of a single path per SD pair.
Connections, which may be either inhibitory or excitatory and whose values are based on the
energy function that is to be minimized, are established between all pairs of neurons. The NN
evolves from some initial state to a final state that represents a local (but not necessarily global)
minimum of the energy function. The evolution of the NN is simulated in software, Although
such software solutions are extremely time-consuming, they verify the soundness of the use of the
Hopfield NN approach for optimization problems of this type. They also suggest that hardware
implementations (which provide convergence to a final state almost instantaneously) may be
worthwhile.

The Hopfield NN methodology is different from more-traditional approaches to
combinatorial-optimization problems. For example, this approach involves embedding a discrete
problem in a continuous solution space. The search for an optimal solution proceeds through the
interior of a continuous region, until the output voltages of the neurons ultimately converge to
binary values that satisfy system constraints and that provide a good, although not necessarily
optimal, solution. Appendix A provides background material on the Hopfield NN model.

The most critical issue in the design and simulation of a Hopfield NN model is the choice
of the coefficients used in the connection weights. To determine good values for these
coefficients, we have used the method of Lagrange multipliers. This technique permits the
coefficients to vary dynamically with the evolution of the system state. This approach provides a
great improvement over the trial-and-error methods used in most studies of Hopfield nets, a
process that is tedious at best, and often ineffective. We provide extensive simulation results that
demonstrate the effectiveness of our Hopfield path-neuron NN model in large, heavily-congested
networks.

We also present an alternative link-neuron NN formulation, in which a set of paths between
every SD pair is again defined but a neuron is defined for each link of every such path. Although
the solutions obtained by this model are typically not as good as those produced by the path-neuron
model, the link-neuron model does, in fact, represent a significant advance in our study of NN
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accepted and system evolution proceeds from this new state. If the switch results in a higher
energy, the switch is accepted with the Boltzmann probability:

Pr uphill move = AE] = exp(-AE/T),

where T is a parameter that represents the current "temperature" of the system. Thus, when the
temperature is high, switches that increase the energy are accepted with relatively high probability.
As the temperature decreases, uphill moves are accepted with decreasing probability, until the
algorithm becomes one of pure gradient descent at very low temperatures. Whenever the
temperature is decreased, it must be held constant until thermal equilibriumh is reached. Although it
has been proven that under certain conditions SA methods of this type eventually converge to the
global minimum, the time required to do so is often prohibitive. A binary NN model of this type,
known as the Boltzmann Machine, has been proposed by Hinton and Sejnowski [A 18]. Faster
convergence is claimed for the Cauchy Machine, proposed by Szu and Hartley [A19], under which
the system is perturbed by noise with a Cauchy distribution.

Simulated annealing can be used in conjunction with Hopfield NNs to permit the escape
from local minima, as demonstrated by Levy and Adams [A201 and Akiyama et al. [A211. Analog
neurons with a sigmoidal input-output function, such as that shown earlier in Fig. Al, are again
assumed. Randomness is incorporated into the model by adding Gaussian noise to each of the
neuron input voltages. Initially, a relatively large noise variance is applied, corresponding to a
high temperature. The noise variance is then decreased slowly, permitting equilibrium to be
reached at each temperature, as described above. The slope of the nonlinearity is also varied
during the annealing process. During the early stages, when the temperature is high, a relatively
flat curve (corresponding to a large value of u0) is used. As the temperature decreases, the
sigmoidal curve is gradually made steeper. The use of a low-gain system in the early stages
permits the search to spend more time in the interior of the hypercube, thus, in effect, postponing
the final decision on the state of each neuron. In the latter stages it is desirable to have a sharp
nonlinearity to ensure that the corners of the hypercube are, in fact, reached. The annealing
schedule and sharpening schedule should be coordinated with each other, e.g., use of a high
variance noise process with a steep nonlinearity can be expected to cause oscillatory behavior (and
thus failure to reach equilibrium). On the other hand, noise of low variance will have very little
effect on a system with a relatively flat nonlinearity.

A noiseless Hopfield NN with a nonlinearity that steepens gradually as time progresses can
also be considered. Such an approach, which is essentially SA but without the noise, has been
called mean field annealing (MFA) [A22]. As in systems with noise, since hard decisions on the
neuron voltages do not have to be made at the early stages of the iteration, a better search can be
performed in some cases. However, MFA does not permit gradient hill climbing. Thus global
minima cannot be guaranteed.

We have applied both MFA and SA techniques to the Hopfield NN models used in the
solution of the routing problem. The use of MFA has not been as successful as the use of the
method of Lagrange multipliers with a fixed, relatively steep nonlinearity; thus MFA is not a part of
any of our final NN models. SA is a critical component of our scheduling NN models, although
our routing models generally perform better without it. The use of both MFA and SA in routing
and scheduling problems is discussed in this report and in more detail in Refs. A23 and A24.
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models of network problems. In particular, the ability of this model to supply the excitatory
connections that are needed to generate complete paths from individual links may be viewed as a
first step toward the more general, and more difficult, routing problem in which candidate paths
between each SD pair are not specified in advance. In that case, the NN must piece together
complete paths from individual links that are not a priori associated with each other, a situation that
makes it much more difficult to establish the excitatory connections that are needed to guarantee
complete paths. The link-neuron model may also be viewed as a first step toward our ultimate goal
of solving the joint routing-scheduling problem, in which the time slot for the activation of each
individual link along every path must be determined.

1.2 A Hopfield NN for Link Activation Scheduling

The second problem we address concerns "link activation" or "scheduling" in multihop
packet radio networks. We first consider the determination of schedules of minimum length that
satisfy the specified end-to-end communication requirements between a number of source-
destination (SD) pairs in the network. In problems of this type, the communication requirements
are normally specified simply in terms of the number of packets that must be transmitted over each
physical link* in the network. We also consider the more-difficult case in which the sequence of
link activations along any multihop path in the schedule must be preserved, i.e., the case in which,
for each path, the link emanating from the source must be activated first, the next link second, and
so on. In Ref. 20 this problem is shown to be NP-complete, and a heuristic for a variation of the
problem in wireline (i.e., nonradio) networks is provided. The advantage of sequential link
activation is that it reduces end-to-end delay in the network. We also discuss extensions of our
model to the joint routing-scheduling problem.

Tassiulas et al. [9] were the first to apply the Hopfield NN methodology to the scheduling
problem. In this report, we present improved Hopfield NN formulations, which have been shown
to be capable of producing optimal or nearly-optimal link activation schedules in a variety of
applications. Many of the considerations of our model are similar to those discussed earlier for the
routing problem. For example, we again use the method of Lagrange multipliers to dynamically
vary the values of the coefficients used in the connection weights. Other important aspects of our
models include the incorporation of heuristics into the equations of motion and the use of Gaussian
simulated annealing, both of which encourage the evolution of the NN to optimal solutions.
Extensive simulation results demonstrate the effectiveness of our models,

1.3 Outline of the Report

In Section 2 we address the fundamental issues associated with the joint routing-scheduling
problem, and we discuss the few attempts that have been made to solve this problem.

In Section 3 we present our basic path-neuron Hopfield NN model for the minimization of
congestion. We begin by defining the optimization problem, and we show how an energy function
is derived that incorporates the objective function as well as the system constraints. We then show
how the corresponding NN connection weights and bias currents are determined from the energy
function. We conclude by presenting the resulting equations of motion in an iterative form that is
appropriate for simulation in software.

In Section 4 we present simulation results for the path-neuron model. We discuss the
many issues that have arisen in the simulation of the equations of motion and the methods we have
developed to overcome a variety of problems. In particular, use of the method of Lagrange
multipliers, under which the coefficients in the connection weights evolve dynamically with the
system state, is shown to provide highly robust operation in large, heavily-congested networks.

fIn this report, we refer to the communication channel between two nodes as a physical link. A link corresponds to a

"virtual" link that corresponds to a single unit of traffic that must traverse a given physical link. Thus, if n units of traffic
are to be delivered on the physical link that connects nodes i andj, there are n parallel "links" between nodes i andj.
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